提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

中班數(shù)學(xué)《梯形》說(shuō)課稿

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項(xiàng)和公式(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項(xiàng)和公式(1)教學(xué)設(shè)計(jì)

    高斯(Gauss,1777-1855),德國(guó)數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測(cè)量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過(guò)杰出貢獻(xiàn). 問(wèn)題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實(shí)際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項(xiàng)的和問(wèn)題.等差數(shù)列中,下標(biāo)和相等的兩項(xiàng)和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問(wèn)題2: 你能用上述方法計(jì)算1+2+3+… +101嗎?問(wèn)題3: 你能計(jì)算1+2+3+… +n嗎?需要對(duì)項(xiàng)數(shù)的奇偶進(jìn)行分類(lèi)討論.當(dāng)n為偶數(shù)時(shí), S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時(shí), n-1為偶數(shù)

  • 人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的四則運(yùn)算法則教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的四則運(yùn)算法則教學(xué)設(shè)計(jì)

    求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運(yùn)算特點(diǎn),即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)數(shù);(2)對(duì)于三個(gè)以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個(gè)”函數(shù)的積、商的導(dǎo)數(shù)計(jì)算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過(guò)凈化的,隨著水的純凈度的提高,所需進(jìn)化費(fèi)用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費(fèi)用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時(shí),所需進(jìn)化費(fèi)用的瞬時(shí)變化率:(1) 90% ;(2) 98%解:凈化費(fèi)用的瞬時(shí)變化率就是凈化費(fèi)用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2

  • 人教版高中數(shù)學(xué)選修3成對(duì)數(shù)據(jù)的相關(guān)關(guān)系教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3成對(duì)數(shù)據(jù)的相關(guān)關(guān)系教學(xué)設(shè)計(jì)

    由樣本相關(guān)系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個(gè)變量正線(xiàn)性相關(guān),且相關(guān)程度很強(qiáng)。脂肪含量與年齡變化趨勢(shì)相同.歸納總結(jié)1.線(xiàn)性相關(guān)系數(shù)是從數(shù)值上來(lái)判斷變量間的線(xiàn)性相關(guān)程度,是定量的方法.與散點(diǎn)圖相比較,線(xiàn)性相關(guān)系數(shù)要精細(xì)得多,需要注意的是線(xiàn)性相關(guān)系數(shù)r的絕對(duì)值小,只是說(shuō)明線(xiàn)性相關(guān)程度低,但不一定不相關(guān),可能是非線(xiàn)性相關(guān).2.利用相關(guān)系數(shù)r來(lái)檢驗(yàn)線(xiàn)性相關(guān)顯著性水平時(shí),通常與0.75作比較,若|r|>0.75,則線(xiàn)性相關(guān)較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷(xiāo)售額的10年數(shù)據(jù),如表所示.畫(huà)出散點(diǎn)圖,判斷成對(duì)樣本數(shù)據(jù)是否線(xiàn)性相關(guān),并通過(guò)樣本相關(guān)系數(shù)推斷居民年收入與A商品銷(xiāo)售額的相關(guān)程度和變化趨勢(shì)的異同.

  • 人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的概念及其幾何意義教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的概念及其幾何意義教學(xué)設(shè)計(jì)

    新知探究前面我們研究了兩類(lèi)變化率問(wèn)題:一類(lèi)是物理學(xué)中的問(wèn)題,涉及平均速度和瞬時(shí)速度;另一類(lèi)是幾何學(xué)中的問(wèn)題,涉及割線(xiàn)斜率和切線(xiàn)斜率。這兩類(lèi)問(wèn)題來(lái)自不同的學(xué)科領(lǐng)域,但在解決問(wèn)題時(shí),都采用了由“平均變化率”逼近“瞬時(shí)變化率”的思想方法;問(wèn)題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問(wèn)題。探究1: 對(duì)于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時(shí), x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時(shí),平均變化率ΔyΔx無(wú)限趨近于一個(gè)確定的值,即ΔyΔx有極限,則稱(chēng)y=f (x)在x=x0處____,并把這個(gè)________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱(chēng)為_(kāi)_________),記作f ′(x0)或________,即

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (2) 教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (2) 教學(xué)設(shè)計(jì)

    二、典例解析例4. 用 10 000元購(gòu)買(mǎi)某個(gè)理財(cái)產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計(jì)息,12個(gè)月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計(jì)息,存4個(gè)季度,則當(dāng)每季度利率為多少時(shí),按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計(jì)算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開(kāi)始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢(qián)存 n 個(gè)月以后的本利和組成一個(gè)數(shù)列{a_n },則{a_n }是等比數(shù)列,首項(xiàng)a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個(gè)月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢(qián)存 n 個(gè)季度以后的本利和組成一個(gè)數(shù)列{b_n },則{b_n }也是一個(gè)等比數(shù)列,首項(xiàng) b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式   (1) 教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式 (1) 教學(xué)設(shè)計(jì)

    新知探究國(guó)際象棋起源于古代印度.相傳國(guó)王要獎(jiǎng)賞國(guó)際象棋的發(fā)明者,問(wèn)他想要什么.發(fā)明者說(shuō):“請(qǐng)?jiān)谄灞P(pán)的第1個(gè)格子里放上1顆麥粒,第2個(gè)格子里放上2顆麥粒,第3個(gè)格子里放上4顆麥粒,依次類(lèi)推,每個(gè)格子里放的麥粒都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子.請(qǐng)給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國(guó)王覺(jué)得這個(gè)要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國(guó)王是否能實(shí)現(xiàn)他的諾言.問(wèn)題1:每個(gè)格子里放的麥粒數(shù)可以構(gòu)成一個(gè)數(shù)列,請(qǐng)判斷分析這個(gè)數(shù)列是否是等比數(shù)列?并寫(xiě)出這個(gè)等比數(shù)列的通項(xiàng)公式.是等比數(shù)列,首項(xiàng)是1,公比是2,共64項(xiàng). 通項(xiàng)公式為〖a_n=2〗^(n-1)問(wèn)題2:請(qǐng)將發(fā)明者的要求表述成數(shù)學(xué)問(wèn)題.

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們?cè)诶斫饬撕瘮?shù)的一般概念,了解了函數(shù)變化規(guī)律的研究?jī)?nèi)容(如單調(diào)性,奇偶性等)后,通過(guò)研究基本初等函數(shù)不僅加深了對(duì)函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類(lèi)似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項(xiàng)公式和前n項(xiàng)和公式,并應(yīng)用它們解決實(shí)際問(wèn)題和數(shù)學(xué)問(wèn)題,從中感受數(shù)學(xué)模型的現(xiàn)實(shí)意義與應(yīng)用,下面,我們從一類(lèi)取值規(guī)律比較簡(jiǎn)單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號(hào)的女裝上對(duì)應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測(cè)量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(2)教學(xué)設(shè)計(jì)

    二、典例解析例3.某公司購(gòu)置了一臺(tái)價(jià)值為220萬(wàn)元的設(shè)備,隨著設(shè)備在使用過(guò)程中老化,其價(jià)值會(huì)逐年減少.經(jīng)驗(yàn)表明,每經(jīng)過(guò)一年其價(jià)值會(huì)減少d(d為正常數(shù))萬(wàn)元.已知這臺(tái)設(shè)備的使用年限為10年,超過(guò)10年 ,它的價(jià)值將低于購(gòu)進(jìn)價(jià)值的5%,設(shè)備將報(bào)廢.請(qǐng)確定d的范圍.分析:該設(shè)備使用n年后的價(jià)值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價(jià)值不小于(220×5%=)11萬(wàn)元;10年后,該設(shè)備的價(jià)值需小于11萬(wàn)元.利用{an}的通項(xiàng)公式列不等式求解.解:設(shè)使用n年后,這臺(tái)設(shè)備的價(jià)值為an萬(wàn)元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個(gè)公差為-d的等差數(shù)列.因?yàn)閍1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式   (2) 教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式 (2) 教學(xué)設(shè)計(jì)

    二、典例解析例10. 如圖,正方形ABCD 的邊長(zhǎng)為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個(gè)正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開(kāi)始,連續(xù)10個(gè)正方形的面積之和;(2) 如果這個(gè)作圖過(guò)程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個(gè)等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個(gè)正方形的頂點(diǎn)分別是第k個(gè)正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個(gè)正方形的面積之和為25575/512cm^2.(2)當(dāng)無(wú)限增大時(shí),無(wú)限趨近于所有正方形的面積和

  • 人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    情景導(dǎo)學(xué)古語(yǔ)云:“勤學(xué)如春起之苗,不見(jiàn)其增,日有所長(zhǎng)”如果對(duì)“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個(gè)數(shù)列. 那么什么叫數(shù)列呢?二、問(wèn)題探究1. 王芳從一歲到17歲,每年生日那天測(cè)量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時(shí)的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號(hào)K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個(gè)月中從第1天到第15天,每天月亮可見(jiàn)部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項(xiàng)和公式(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項(xiàng)和公式(2)教學(xué)設(shè)計(jì)

    課前小測(cè)1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項(xiàng)和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項(xiàng)之和最大.( )(3)在等差數(shù)列中,Sn是其前n項(xiàng)和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項(xiàng)數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項(xiàng)的和為165,所有偶數(shù)項(xiàng)的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項(xiàng).]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項(xiàng)公式是an=2n-48,則Sn取得最小值時(shí),n為_(kāi)_______.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項(xiàng)的和最小,即n=23或24.]二、典例解析例8.某校新建一個(gè)報(bào)告廳,要求容納800個(gè)座位,報(bào)告廳共有20排座位,從第2排起后一排都比前一排多兩個(gè)座位. 問(wèn)第1排應(yīng)安排多少個(gè)座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項(xiàng)和為S_n。

  • 人教版高中數(shù)學(xué)選擇性必修二函數(shù)的單調(diào)性(1)  教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二函數(shù)的單調(diào)性(1) 教學(xué)設(shè)計(jì)

    1.判斷正誤(正確的打“√”,錯(cuò)誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線(xiàn)越“陡峭”. ( )(3)函數(shù)在某個(gè)區(qū)間上變化越快,函數(shù)在這個(gè)區(qū)間上導(dǎo)數(shù)的絕對(duì)值越大.( )(4)判斷函數(shù)單調(diào)性時(shí),在區(qū)間內(nèi)的個(gè)別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減,故正確.(2)× 切線(xiàn)的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯(cuò)誤.(3)√ 函數(shù)在某個(gè)區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對(duì)值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示

  • 人教版高中數(shù)學(xué)選修3二項(xiàng)式系數(shù)的性質(zhì)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3二項(xiàng)式系數(shù)的性質(zhì)教學(xué)設(shè)計(jì)

    1.對(duì)稱(chēng)性與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時(shí),C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時(shí),中間的一項(xiàng)C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時(shí),中間的兩項(xiàng)C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時(shí)取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項(xiàng)式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開(kāi)式的各二項(xiàng)式系數(shù)之和為2^n1. 在(a+b)8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 ,在(a+b)9的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 . 解析:因?yàn)?a+b)8的展開(kāi)式中有9項(xiàng),所以中間一項(xiàng)的二項(xiàng)式系數(shù)最大,該項(xiàng)為C_8^4a4b4=70a4b4.因?yàn)?a+b)9的展開(kāi)式中有10項(xiàng),所以中間兩項(xiàng)的二項(xiàng)式系數(shù)最大,這兩項(xiàng)分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 大班體育活動(dòng)《數(shù)字格子跳跳樂(lè)》課件教案

    大班體育活動(dòng)《數(shù)字格子跳跳樂(lè)》課件教案

    活動(dòng)目標(biāo):1.探索泡沫墊的多種玩法。 2.結(jié)合數(shù)字規(guī)律練習(xí)單腳跳、雙腳跳及跨跳等多種跳的能力及動(dòng)作的協(xié)調(diào)能力。 3.努力聽(tīng)清教師指令,遵守游戲規(guī)則?;顒?dòng)準(zhǔn)備:人手一塊泡沫墊,1~10的數(shù)字卡片2套?;顒?dòng)過(guò)程:一.開(kāi)始部分。今天天氣真不錯(cuò),我們一起來(lái)玩玩吧!(幼兒隨鈴鼓的變化變大圓----小圓----蝸牛圓) 二.基本部分。1. 出示泡沫墊,你們知道這是什么嗎?它有什么用?泡沫墊除了可以作為墊子,還可以和我們玩游戲呢?我們一起來(lái)試試。現(xiàn)在小朋友們分成2組游戲,可以自己玩,也可以和同組的小伙伴一起玩。(幼兒四散游戲)

  • 豐富的圖形世界  展開(kāi)與折疊教案教學(xué)設(shè)計(jì)

    豐富的圖形世界 展開(kāi)與折疊教案教學(xué)設(shè)計(jì)

    設(shè)計(jì)意圖:題目1是判斷能否折疊形成立體幾何,本題可以研究學(xué)生對(duì)常見(jiàn)幾何體的把握是否成熟。題目2是考察正方體的展開(kāi)圖,一方面可以研究學(xué)生對(duì)幾何體的把握,另一方面可以引導(dǎo)學(xué)生思考,引出下面要學(xué)習(xí)的內(nèi)容。)學(xué)生預(yù)設(shè)回答:題目一:學(xué)生應(yīng)該很容易的說(shuō)出折疊后形成的立體圖形。題目二:①運(yùn)用動(dòng)手操作的方法,剪出題目中的圖形,折疊后對(duì)題目做出判斷。 ②利用空間觀(guān)念,復(fù)原展開(kāi)圖,發(fā)現(xiàn)6的對(duì)面是1,2的對(duì)面是4,5的對(duì)面是3,進(jìn)而做出判斷。教師引導(dǎo)語(yǔ)預(yù)設(shè):① 當(dāng)學(xué)生運(yùn)用動(dòng)手操作的方法,可以讓學(xué)生動(dòng)手實(shí)踐一下,下一步再引導(dǎo)學(xué)生觀(guān)察正方體,發(fā)現(xiàn)規(guī)律。② 當(dāng)學(xué)生運(yùn)用空間觀(guān)念,教師要放慢語(yǔ)調(diào),和學(xué)生一起想象,鍛煉學(xué)生空間想象能力。

  • 人教版高中地理必修1山岳的形成教案

    人教版高中地理必修1山岳的形成教案

    【轉(zhuǎn)折過(guò)渡】除了以上所說(shuō)的褶皺山和斷層山之 外,是否還有其他類(lèi)型的山脈呢?試舉一例說(shuō)明?!緦W(xué)生思考后回答】有,如富士山屬于火山。【教師總結(jié)】同學(xué)們回答的很好,還有火山,那么火山是如何形成的呢?這就是我們要研究的下一個(gè)問(wèn)題?!景鍟?shū)】3、火山【指導(dǎo)讀書(shū)】請(qǐng)同學(xué)們閱讀教材P81思考:①玄武巖高原和火山有什么聯(lián)系與區(qū)別? ②火山由哪幾部分構(gòu)成的?③火山的規(guī)模是否相同?【學(xué)生回答】①聯(lián)系:玄武巖高原和火山都是由于處于地下深處的巖漿,在巨大的壓力作用下,有時(shí)候會(huì)沿著地殼的薄弱地帶噴出地表而形成的。區(qū)別:玄武巖高原是巖漿沿著地殼的線(xiàn)狀裂隙流出,往往比較寬廣。如哥倫比亞高原。火山是巖漿沿著地殼的中央噴出口或管道噴出。如我國(guó)長(zhǎng)白山的主峰。②火山由火山口和火山錐兩部分組成。③火山的規(guī)模大小不一,大火山的相對(duì)高度可達(dá)4 000~5 000米,火山口直徑為數(shù)百米;小火山的相對(duì)高度不及100米。

  • 人教版高中地理選修1地形的變化教案

    人教版高中地理選修1地形的變化教案

    學(xué)習(xí)目標(biāo)1.了解外力作用的表現(xiàn)形式,理解風(fēng)化作用、侵蝕作用、搬運(yùn)作用和沉積作用的概念和種類(lèi),以及它們所形成的各種地形;培養(yǎng)學(xué)生觀(guān)察、分析地理景觀(guān)圖的能力和動(dòng)手做實(shí)驗(yàn)的能力。2.了解外力作用各表現(xiàn)形式之間的關(guān)系,理解它們是如何推動(dòng)地表形態(tài)的演化的,培養(yǎng)我們學(xué)生地理事物之間相互聯(lián)系的觀(guān)點(diǎn),從而樹(shù)立辯證唯物主義的觀(guān)點(diǎn)。學(xué)習(xí)重點(diǎn)1.風(fēng)化、侵蝕、搬運(yùn)、沉積作用所形成的不同的地表形態(tài)。2.外力作用各表現(xiàn)形式相互之間的關(guān)系。學(xué)習(xí)難點(diǎn)1.外力作用各表現(xiàn)形式所形成的不同的地表形態(tài)。2.培養(yǎng)學(xué)生樹(shù)立正確的人地關(guān)系的觀(guān)點(diǎn)。學(xué)習(xí)過(guò)程:1、看課本討論回答:外力作用①能量來(lái)源 ②表現(xiàn)形式 ③對(duì)地貌的影響2、流水、風(fēng)力作用及其形成的地貌

  • 國(guó)旗下的講話(huà)演講稿:文明是種無(wú)形的力量

    國(guó)旗下的講話(huà)演講稿:文明是種無(wú)形的力量

    這篇《國(guó)旗下的講話(huà)演講稿:文明是種無(wú)形的力量》,是特地,希望對(duì)大家有所幫助!敬愛(ài)的老師,親愛(ài)的同學(xué)們:大家請(qǐng)看我手中的這張圖片,你是否發(fā)現(xiàn)圖中女孩的雙手有什么不同?(向觀(guān)眾展示圖片)是的,他的雙手只有兩個(gè)手指頭!如果你只有兩個(gè)手指,你會(huì)努力讓自己和同齡人一樣生活嗎?如果你只有兩個(gè)手指,你是否堅(jiān)信自己的生命仍然可以圓滿(mǎn)?圖中的女孩,卻用這樣一雙只有兩個(gè)手指的右手,做了一件感動(dòng)中國(guó)的事情。她叫潘娜威,遼寧營(yíng)口市一名普通的學(xué)生,她用著兩個(gè)指頭見(jiàn)了無(wú)數(shù)的廢舊電池。有的時(shí)候,小娜威撿廢電池,周?chē)『⒆涌匆?jiàn)跟著學(xué),有的孩子父母看見(jiàn)了,就特別不高興地喊,多臟啊,撿哪個(gè)干嘛?小娜威一點(diǎn)也不客氣地回敬說(shuō):“手臟了可以洗,地球臟了怎么洗?”

  • 關(guān)于國(guó)旗下講話(huà)稿:文明是種無(wú)形的力量

    關(guān)于國(guó)旗下講話(huà)稿:文明是種無(wú)形的力量

    以下是《關(guān)于國(guó)旗下講話(huà)稿:文明是種無(wú)形的力量》的文章,供大家參考關(guān)于國(guó)旗下講話(huà)稿:文明是種無(wú)形的力量敬愛(ài)的老師,親愛(ài)的同學(xué)們:大家請(qǐng)看我手中的這張圖片,你是否發(fā)現(xiàn)圖中女孩的雙手有什么不同?(向觀(guān)眾展示圖片)是的,他的雙手只有兩個(gè)手指頭!如果你只有兩個(gè)手指,你會(huì)努力讓自己和同齡人一樣生活嗎?如果你只有兩個(gè)手指,你是否堅(jiān)信自己的生命仍然可以圓滿(mǎn)?圖中的女孩,卻用這樣一雙只有兩個(gè)手指的右手,做了一件感動(dòng)中國(guó)的事情。她叫潘娜威,遼寧營(yíng)口市一名普通的學(xué)生,她用著兩個(gè)指頭見(jiàn)了無(wú)數(shù)的廢舊電池。有的時(shí)候,小娜威撿廢電池,周?chē)『⒆涌匆?jiàn)跟著學(xué),有的孩子父母看見(jiàn)了,就特別不高興地喊,多臟啊,撿哪個(gè)干嘛?小娜威一點(diǎn)也不客氣地回敬說(shuō):“手臟了可以洗,地球臟了怎么洗?”

  • 茗山中學(xué)班級(jí)工作考核評(píng)估制度

    茗山中學(xué)班級(jí)工作考核評(píng)估制度

    一、考核時(shí)間:以每個(gè)教學(xué)月為單位,一月一考核,一月一計(jì)獎(jiǎng)。二、計(jì)分方法:月滿(mǎn)分為200分,本規(guī)定以扣分為主,扣后的剩余分?jǐn)?shù)之和加獎(jiǎng)分等于本月總積分。三、記獎(jiǎng)方法:各年級(jí)組同類(lèi)班級(jí)取第一名為文明班級(jí)。如若特長(zhǎng)班第二名與第一名月積分小于或等于10分,可享受二等獎(jiǎng),若特長(zhǎng)班第三名與第一名月積分小于或等于20分,可享受三等獎(jiǎng),大于20分無(wú)獎(jiǎng);如若平行班第二名與第一名月積分小于或等于20分,可享受二等獎(jiǎng),如若平行班第三名與第一名月積分小于或等于30分,可享受三等獎(jiǎng),大于30分無(wú)獎(jiǎng);一班的評(píng)獎(jiǎng)方法是:與一班、一(5)班減去寢室的月積分相比,若高于或等于第一名的月積分,可享受一等獎(jiǎng),如此例推;二(4)班的評(píng)獎(jiǎng)方法是:減去5個(gè)流失生的分?jǐn)?shù),與二(1)班、二(2)班、二(3)班的最后一個(gè)獲得獎(jiǎng)項(xiàng)的班級(jí)相比,如若月積分小于或等于20分,可享受一等獎(jiǎng),若月積分小于或等于30分,可享受二等獎(jiǎng),如若月積分小于或等于40分,可享受三等獎(jiǎng),大于40分無(wú)獎(jiǎng),若在同級(jí)同類(lèi)班級(jí)中月積分小于3分,每班可同時(shí)享受一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)(平行班月扣分達(dá)80分以上取消評(píng)獎(jiǎng)資格,特長(zhǎng)班月扣分達(dá)50分以上取消評(píng)獎(jiǎng)資格)。四、獎(jiǎng)金分配:初一、初二住讀班、特長(zhǎng)班、初三走讀班按班數(shù)每班每月拿出0.5個(gè)崗位值來(lái)作為總獎(jiǎng)金,初一、初二走讀班按班數(shù)每班每月拿出0.4個(gè)崗位值來(lái)作為總獎(jiǎng)金,初三特長(zhǎng)班、住讀班按班數(shù)每班每月拿出0.6個(gè)崗位值來(lái)作為總獎(jiǎng)金,一次扣3分。財(cái)產(chǎn):每月至少查一次,損壞公物要照價(jià)賠償,且予以扣分,玻璃一塊扣1分,桌椅損壞一張扣2分,門(mén)破窗垮一次扣5分。大型集會(huì):如升旗、運(yùn)動(dòng)會(huì)、課間操……等班主任必須到操場(chǎng)組織學(xué)生站隊(duì),確保隊(duì)伍質(zhì)量,真正做到快齊靜,班主任一次未到扣1分。班級(jí)被領(lǐng)導(dǎo)點(diǎn)名批評(píng)一次扣1分。班級(jí)無(wú)故缺會(huì)一次扣10分。宣傳:黑板報(bào)每月辦一期,以學(xué)校安排為主,未安排時(shí)各班自行主辦,否則未辦一次扣5分,在學(xué)校大型宣傳活動(dòng)中,不投稿、不配合1次扣5分,其它酌情扣分。

上一頁(yè)123...251252253254255256257258259260261262下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!