教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設情境 興趣導入 【實驗】 商店進了一批蘋果,小王從中任意選取了10個蘋果,編上號并稱出質量.得到下面的數(shù)據(jù)(如表10-6所示): 蘋果編號12345678910質量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數(shù)據(jù),就可以估計出這批蘋果的平均質量及蘋果的大小是否均勻. 介紹 質疑 講解 說明 了解 思考 啟發(fā) 學生思考 0 10*動腦思考 探索新知 【新知識】 在統(tǒng)計中,所研究對象的全體叫做總體,組成總體的每個對象叫做個體. 上面的實驗中,這批蘋果的質量是研究對象的總體,每個蘋果的質量是研究的個體. 講解 說明 引領 分析 理解 記憶 帶領 學生 分析 20*鞏固知識 典型例題 【知識鞏固】 例1 研究某班學生上學期數(shù)學期末考試成績,指出其中的總體與個體. 解 該班所有學生的數(shù)學期末考試成績是總體,每一個學生的數(shù)學期末考試成績是個體. 【試一試】 我們經(jīng)常用燈泡的使用壽命來衡量燈炮的質量.指出在鑒定一批燈泡的質量中的總體與個體. 說明 強調 引領 觀察 思考 主動 求解 通過例題進一步領會 35
六、說學法本節(jié)課的學法主要是自主探究法、合作交流法。教法和學法是和諧統(tǒng)一的,相互聯(lián)系,密不可分。教學中要注意發(fā)揮學生的主體地位,充分調動學生的各種感官參與學習,誘發(fā)其內在的潛力,獨立主動的探索,使他們不僅學會,而且會學。學生通過小組合作的方式,自主探究設計出秋游方案,然后每個小組間進行交流,最后推選出最合理可行的方案。學生通過解決生活中的實際問題,從中發(fā)現(xiàn)與數(shù)學之間的聯(lián)系。并通過同伴間的交流、討論等多種方法制定出解決方案,他們從生活中抽象,在實踐中體驗,最后在討論中明理,從而得出了最佳的方案。七、說教學過程為了能很好地化解重點、突破難點達到預期的教學目標,我設計了三個教學環(huán)節(jié),下面,我就從這三個環(huán)節(jié)一一進行闡述。(一)創(chuàng)設情境、激發(fā)興趣
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學生已經(jīng)學過一元二次方程與二次函數(shù)的關系,本節(jié)課的內容就是在此基礎上的推廣。從而建立一般的函數(shù)的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1、了解函數(shù)(結合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關系,掌握零點存在性定理的運用;3、在認識函數(shù)零點的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數(shù)學數(shù)形結合及函數(shù)思想; a.數(shù)學抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學建模:運用函數(shù)的觀點方程的根;
本章通過學習用二分法求方程近似解的的方法,使學生體會函數(shù)與方程之間的關系,通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。1.了解函數(shù)的零點、方程的根與圖象交點三者之間的聯(lián)系.2.會借助零點存在性定理判斷函數(shù)的零點所在的大致區(qū)間.3.能借助函數(shù)單調性及圖象判斷零點個數(shù).數(shù)學學科素養(yǎng)1.數(shù)學抽象:函數(shù)零點的概念;2.邏輯推理:借助圖像判斷零點個數(shù);3.數(shù)學運算:求函數(shù)零點或零點所在區(qū)間;4.數(shù)學建模:通過由抽象到具體,由具體到一般的思想總結函數(shù)零點概念.重點:零點的概念,及零點與方程根的聯(lián)系;難點:零點的概念的形成.
本節(jié)通過學習用二分法求方程近似解的的方法,使學生體會函數(shù)與方程之間的關系,通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.了解二分法的原理及其適用條件.2.掌握二分法的實施步驟.3.通過用二分法求方程的近似解,使學生體會函數(shù)零點與方程根之間的聯(lián)系,初步形成用函數(shù)觀點處理問題的意識.數(shù)學學科素養(yǎng)1.數(shù)學抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點近似值的步驟;3.數(shù)學運算:求函數(shù)零點近似值;4.數(shù)學建模:通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用.
《數(shù)學1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學生根據(jù)具體的函數(shù)圖象能夠借助計算機或信息技術工具計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數(shù)與方程之間的聯(lián)系;它既是本冊書中的重點內容,又是對函數(shù)知識的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應用,同時又為高中數(shù)學中函數(shù)與方程思想、數(shù)形結合思想、二分法的算法思想打下了基礎,因此決定了它的重要地位.發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.通過具體實例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計算器用二分法求方程的近似解.3.會用二分法求一個函數(shù)在給定區(qū)間內的零點,從而求得方程的近似解. a.數(shù)學抽象:二分法的概念;b.邏輯推理:運用二分法求近似解的原理;
(1)幾何法它是利用圖形的幾何性質,如圓的性質等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設——設所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設方程,得所求圓的方程.跟蹤訓練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.
情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
3.下結論.依據(jù)均值和方差做出結論.跟蹤訓練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔風險的投資者,投資A項目更合適.
解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
1.會用計算器求平方根和立方根;(重點)2.運用計算器探究數(shù)字規(guī)律,提高推理能力.一、情境導入前面我們通過平方和立方運算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點一:利用計算器進行開方運算 用計算器求6+7的值.解:按鍵順序為■6+7=SD,顯示結果為:9.449489743.方法總結:當被開方數(shù)不是一個數(shù)時,輸入時一定要按鍵.解本題時常出現(xiàn)的錯誤是:■6+7=SD,錯的原因是被開方數(shù)是6,而不是6與7的和,這樣在輸入時,對“6+7”進行開方,使得計算的是6+7而不是6+7,從而導致錯誤.K探究點二:利用科學計算器比較數(shù)的大小利用計算器,比較下列各組數(shù)的大小:(1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結果為1.414213562.按鍵順序:SHIFT■5=,顯示結果為1.709975947.所以2<35.
2、晚自習,教師不得講課,應讓學生自習,吃“自助餐”(以理科為主,高中文科除外)。作業(yè)做錯的,應更正作業(yè),教師給他批改,并作必要的輔導;優(yōu)秀學生可看課外書籍、預習明天的功課或練習競賽一類的拔高題;必要時,文科老師也可與個別學生接觸,作短時間的輔導?! ?、中午(至下午上課前),教師不得講課,可以讓學生更正上午做錯的作業(yè),優(yōu)秀學生可以自由活動(可以進閱覽室看書)。
二、活動目標通過雕刻“小企鵝”雪雕作品活動,使幼兒感知經(jīng)過積壓的雪很硬,懂得運用各種工具進行雕琢。培養(yǎng)幼兒合作意識。三、適用對象大班幼兒。四、活動所需資源錄像帶、小冰鏟、小角鏟(自制),笤帚、小鋸等。五、活動過程探究的問題:怎樣雕“小企鵝”。幼兒討論。(1)用彩筆畫企鵝。(2)用彩泥捏企鵝。(3)用雪坯雕企鵝。
(二)學習制作降落傘。 (三)學習目測相同長度的線條。 二、活動準備 多媒體課件、塑料紙、線、橡皮泥、雙面膠 三、活動過程 (一)運用多媒體介紹不同種類的傘和構造,導入:“今天,們邀請我們去他們家做客,小朋友要仔細看看有哪幾種傘,傘寶寶傘由哪幾個部分組成呢?”(工藝傘、折疊傘、長柄傘、卡通傘) (二)引導幼兒認識降落傘,播放在哭泣的降落傘聲音,請小朋友幫助把它送回家,展示圖片將傘和降落傘從外型、用途進行比較。 提問:傘由哪幾個部分組成(傘骨、傘面、傘柄) 降落傘的傘骨、傘面、傘柄在哪,請小朋友找出來。 降落傘有傘骨嗎?與傘的傘骨一樣?為什么? 降落傘有哪些本領?(保護自身安全、極限運動、特技表演) 為什么降落傘能從空中降落下來,我們小朋友用的傘可以降落下來嗎?
2、能掌握正確使用剪刀的方法。3、能大膽地設計手套的圖案,體現(xiàn)出圖案帶來的美感。準備:1、每人一張白色的信封。2、用信封制作出的手套幾幅。3、油畫棒、小剪刀每人一套。過程:1、引導制作手套的興趣。(1)做手指游戲。(小朋友們大家好,我們來做一個手指游戲,請小朋友和老師一樣伸出你的小手,和老師一起做.大拇指是爸爸,爸爸開汽車,嘀嘀嘀。爸爸旁邊是媽媽,媽媽洗衣服,嘩嘩嘩。個子最高是哥哥,哥哥打籃球,嘭嘭嘭。哥哥旁邊是姐姐,姐姐在跳舞,啦啦啦。小小手指就是我,我在敲鑼鼓,咚咚咚,鏘鏘鏘, ,咚咚咚,鏘鏘鏘, ,咚鏘、咚鏘、咚咚鏘。
根據(jù)《中華人民共和國合同法》和工程的具體情況,本著公平、合理、互惠互利的原則和誠實守信的精神,為明確甲乙雙方的權利、義務的經(jīng)濟責任,甲方將 公司開發(fā)的 小區(qū)中的陽臺鋅鋼欄桿、屋面鋅鋼欄桿制作與安裝工程承包給乙方施工,經(jīng)與乙方協(xié)商一致簽訂如下協(xié)議。一、 訂購產(chǎn)品名稱:內卡組合式鋅鋼欄桿二、 樣式及顏色: 按“黑烤漆”確認的樣品為準。三、 工程地點: 四、 安裝數(shù)量: 陽臺欄桿1~11#樓約5000米,屋面欄桿1~11#樓約1000米。結算時按實際安裝欄桿面管長度計算。五、 工期要求:根據(jù)甲方要求,以單棟交付給乙方(有工作面)15天內欄桿安裝完工,每延遲一天罰款500元。六、 質量及技術要求:1、本合同所指欄桿系列均以內卡組合式加工而成,陽臺欄桿高度為110cm,屋面欄桿高度為110cm。2、陽臺欄桿材料要求:面管為30×60面包管,厚度1.2㎜;立柱為 40×40,厚度1.2㎜;橫管為 32×32,厚度為0.8㎜;豎管為:19×19,厚度為0.8㎜,單價 元/米(含發(fā)票)。(材料以樣品為準)
一、教材分析在初中階段,物理量單位的學習是學生較為困惑的問題之一。前面關于1N的規(guī)定給學生的印象總好像是有些隨意。尤其是牛頓、帕斯卡、安培、伏特、焦耳、瓦特等單位的規(guī)定。使得學生感動物理太復雜。事實上,只有把單位制放在整個物理學框架中加以認識,并且知識有了一定的積累。經(jīng)歷了充分的學習過程后才能體會物理量單位的命名和使用規(guī)則。體會到其中對一些單位進行規(guī)定的合理性和方便特征。物理學單位中,有很少幾個基本物理量,它們的單位就是基本單位。在進行了這種選定之后,其它物理量的單位就是根據(jù)它的定義式,有所選擇的其他物理量的單位共同確定的。國際單位制的建立和使用,不僅方便了國際間的交流,也逐漸成為科學研究中計算和運用的一種規(guī)范約束。中學生應該注意學習,逐步習慣,在記錄、表達和計算中規(guī)范使用。二、教學目標(一)知識與技能1.了解什么是單位制,知道力學中的三個基本單位;2.認識單位制在物理計算中的作用
今天我說課的內容是人教版高中物理必修1第四章第四節(jié)《力學單位制》,我的說課內容將按下列程序展開。首先是本節(jié)教材的分析。一、說教材1、本節(jié)課在教材中的地位單位是學生在高考中最容易犯錯的地方之一,本節(jié)課內容貫穿整個物理學科的每部分。學好這部分內容對所有的自然學科都有幫助。2、教材簡析教材可分為:單位制等概念的來源和單位制的推廣。二、說教學目標:教學目標的設定是教師進行課堂授課的一個重要依據(jù),是教師完成教學任務的鑒定標準。根據(jù)新課標要求和學生特點我對本節(jié)制定以下教學目標(1)了解什么是單位制,知道國際單位制中力學的三個基本單位。(2)認識單位制在物理學中和國際交往中的重要作用。(3)學會用單位運算來檢查物理公式推導的正確性,從而培養(yǎng)學生解決實際問題的能力。