【類型二】 根據(jù)數(shù)軸求不等式的解關(guān)于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結(jié):本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關(guān)于a的方程是解題關(guān)鍵.三、板書設(shè)計1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學(xué)習(xí)不等式的解和解集,利用數(shù)軸表示不等式的解,讓學(xué)生體會到數(shù)形結(jié)合的思想的應(yīng)用,能夠直觀的理解不等式的解和解集的概念,為接下來的學(xué)習(xí)打下基礎(chǔ).在課堂教學(xué)中,要始終以學(xué)生為主體,以引導(dǎo)的方式鼓勵學(xué)生自己探究未知,提高學(xué)生的自我學(xué)習(xí)能力.
教學(xué)效果:部分學(xué)生能舉一反三,較好地掌握分式方程及其應(yīng)用題的有關(guān)知識與解決生活中的實際問題等基本技能.第六環(huán)節(jié) 課后練習(xí)四、教學(xué)反思數(shù)學(xué)來源于生活,并應(yīng)用于生活,讓學(xué)生用數(shù)學(xué)的眼光觀察生活,除了用所學(xué)的數(shù)學(xué)知識解決一些生活問題外,還可以從數(shù)學(xué)的角度來解釋生活中的一些現(xiàn)象,面向生活是學(xué)生發(fā)展的“源頭活水”.在解決實際生活問題的實例選擇上,我們盡量選擇學(xué)生熟悉的實例,如:學(xué)生身邊的事,購物,農(nóng)業(yè),工業(yè)等方面,讓學(xué)生真切地理解數(shù)學(xué)來源于生活這一事實。有些學(xué)生對應(yīng)用題有一種心有余悸的感覺,其關(guān)鍵是面對應(yīng)用題不知怎樣分析、怎樣找到等量關(guān)系。在教學(xué)中,如果采用列表的方法可幫助學(xué)生審題、找到等量關(guān)系,從而學(xué)會分析問題??赡軐W(xué)生最初并不適應(yīng)這種做法,可采用分步走的方法,首先,讓學(xué)生從一些簡單、類似的問題中模仿老師的分析方法,然后在練習(xí)中讓學(xué)生悟出解決問題的竅門,學(xué)會舉一反三,最后達(dá)到能獨(dú)立解決問題的目的。
答:所有陰影部分的面積和是5050cm2.方法總結(jié):首先應(yīng)找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認(rèn)真觀察、仔細(xì)思考,善用聯(lián)想來解決這類問題.三、板書設(shè)計1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點(diǎn):能夠運(yùn)用平方差公式分解因式的多項式必須是二項式,兩項都能寫成平方的形式,且符號相反.運(yùn)用平方差公式因式分解,首先應(yīng)注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通??紤]應(yīng)用平方差公式;如果多項式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.
解析:想要看起來更美,則鞋底到肚臍的長度與身高之比應(yīng)為黃金比,此題應(yīng)根據(jù)已知條件求出肚臍到腳底的距離,再求高跟鞋的高度.解:設(shè)肚臍到腳底的距離為x m,根據(jù)題意,得x1.60=0.60,解得x=0.96.設(shè)穿上y m高的高跟鞋看起來會更美,則y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她應(yīng)該穿約為7.5cm高的高跟鞋看起來會更美.易錯提醒:要準(zhǔn)確理解黃金分割的概念,較長線段的長是全段長的0.618.注意此題中全段長是身高與高跟鞋鞋高之和.三、板書設(shè)計黃金分割定義:一般地,點(diǎn)C把線段AB分成兩條線段AC 和BC,如果ACAB=BCAC,那么稱線段AB被點(diǎn) C黃金分割黃金分割點(diǎn):一條線段有兩個黃金分割點(diǎn)黃金比:較長線段:原線段=5-12:1 經(jīng)歷黃金分割的引入以及黃金分割點(diǎn)的探究過程,通過問題情境的創(chuàng)設(shè)和解決過程,體會黃金分割的文化價值,在應(yīng)用中進(jìn)一步理解相關(guān)內(nèi)容,在實際操作、思考、交流等過程中增強(qiáng)學(xué)生的實踐意識和自信心.感受數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的思維方式,增進(jìn)數(shù)學(xué)學(xué)習(xí)的興趣.
2.如何找一條線段的黃金分割點(diǎn),以及會畫黃金矩形.3.能根據(jù)定義判斷某一點(diǎn)是否為一條線段的黃金分割點(diǎn).Ⅳ.課后作業(yè)習(xí)題4.8Ⅴ.活動與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個端點(diǎn),選擇AB的黃金分割點(diǎn)C作為第一個試驗點(diǎn),C點(diǎn)的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗的結(jié)果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進(jìn)行第二次試 驗.這次的試驗點(diǎn)應(yīng)該選AC的黃金分割點(diǎn)D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點(diǎn)還不理想,可以按黃金分割的方法繼續(xù)試驗下去.如果太濃,可以選DC之間的黃金分割 點(diǎn) ;如果太稀,可以選AD之間的黃金分割點(diǎn),用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進(jìn)行科學(xué)試驗,可以用最少的試驗次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時間,也節(jié)約了原材料.●板書設(shè)計
解:設(shè)另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結(jié):因為整式的乘法和分解因式互為逆運(yùn)算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設(shè)計1.因式分解的概念把一個多項式轉(zhuǎn)化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關(guān)系因式分解是整式乘法的逆運(yùn)算.本課是通過對比整式乘法的學(xué)習(xí),引導(dǎo)學(xué)生探究因式分解和整式乘法的聯(lián)系,通過對比學(xué)習(xí)加深對新知識的理解.教學(xué)時采用新課探究的形式,鼓勵學(xué)生參與到課堂教學(xué)中,以興趣帶動學(xué)習(xí),提高課堂學(xué)習(xí)效率.
解析:整個陰影部分比較復(fù)雜和分散,像此類問題通常使用割補(bǔ)法來計算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點(diǎn)O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點(diǎn)O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時針旋轉(zhuǎn)90°至陰影部分②處,使整個陰影部分割補(bǔ)成半個正方形.解:如圖②,把陰影部分(Ⅰ)繞點(diǎn)O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時針旋轉(zhuǎn)90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結(jié):本題是利用旋轉(zhuǎn)的特征:旋轉(zhuǎn)前、后圖形的形狀和大小不變,把圖形利用割補(bǔ)法補(bǔ)全為一個面積可以計算的規(guī)則圖形.三、板書設(shè)計1.簡單的旋轉(zhuǎn)作圖2.旋轉(zhuǎn)圖形的應(yīng)用教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、歸納和動手操作,利用旋轉(zhuǎn)的性質(zhì)作圖.
方法三:一個同學(xué)先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點(diǎn)C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結(jié)論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點(diǎn),∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個四邊形是菱形時,要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設(shè)計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進(jìn)一步提高學(xué)生的推理論證能力,體會證明過程中所運(yùn)用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力.
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進(jìn)行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當(dāng)x=45時,y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當(dāng)天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進(jìn)貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進(jìn)時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?
一、說教材“認(rèn)識圖形”是“空間與圖形”的重要內(nèi)容之一。學(xué)生在此之前已經(jīng)對三角形有了一定的認(rèn)識。因為教材的小標(biāo)題為“探索與發(fā)現(xiàn)”,所以我主要是通過讓學(xué)生在自主探索中學(xué)習(xí)本課內(nèi)容。先讓學(xué)生明確“內(nèi)角”的意義,然后引導(dǎo)學(xué)生探索三角形內(nèi)角和等于多少。結(jié)合學(xué)生已經(jīng)有的知識經(jīng)驗,對于本課我確立了以下幾個教學(xué)目標(biāo):1、通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180度。已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。2、滲透猜想--驗證--結(jié)論--運(yùn)用--引申的學(xué)習(xí)方法,培養(yǎng)學(xué)生動手操作和合作交流的能力,培養(yǎng)學(xué)生的探究意識。3、培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣,體驗學(xué)習(xí)數(shù)學(xué)的快樂。把教學(xué)重難點(diǎn)設(shè)定為驗證三角形的內(nèi)角和是180°,并學(xué)會應(yīng)用。
1、教學(xué)內(nèi)容?!凹臃ń粨Q律和乘法交換律”是北師大版《義務(wù)教育課程標(biāo)準(zhǔn)實驗教課書》四年級上冊第四單元的內(nèi)容。書中把兩部分內(nèi)容編排在一起。在備課過程中,根據(jù)教學(xué)內(nèi)容和學(xué)情我先引導(dǎo)學(xué)生觀察發(fā)現(xiàn)加法交換律,然后在學(xué)生掌握加法交換律的基礎(chǔ)上遷移過來。讓孩子們大膽猜想,進(jìn)而驗證,得出乘法交換律。2、加法、乘法交換律在數(shù)學(xué)學(xué)習(xí)中的作用。本單元所學(xué)習(xí)的幾條運(yùn)算定律,不僅適用于整數(shù)的加法和乘法,也適用于有理數(shù)的加法和乘法。隨著數(shù)的范圍的進(jìn)一步擴(kuò)展,在實數(shù)甚至復(fù)數(shù)的加法和乘法中,它們?nèi)匀怀闪?。因此,這些運(yùn)算定律在數(shù)學(xué)中具有重要的地位和作用,被譽(yù)為“數(shù)學(xué)大廈的基石”。而加法、乘法交換律又是這數(shù)學(xué)大廈基石中的基石。
2、目標(biāo)定位:根據(jù)大班幼兒年齡特點(diǎn)及實際情況以及布魯納的《教育目標(biāo)分類學(xué)》為依據(jù),確立了認(rèn)知、能力、情感等方面的目標(biāo),融合了語言、科學(xué)、社會、藝術(shù)領(lǐng)域的整合。目標(biāo)為:(1)通過各種方法引導(dǎo)幼兒發(fā)現(xiàn)自己的成長與變化。(2)激發(fā)幼兒欣賞自己的成長,展示自己的能力,樹立自信心。(3)樂于與同伴交流、分享自己成長的快樂。(4)讓幼兒嘗試制作個人成長冊,發(fā)展幼兒的精細(xì)動作。(5)讓幼兒體會父母的辛苦、關(guān)心,增進(jìn)親子之情。 根據(jù)目標(biāo),我把活動重點(diǎn)定位于:感受“我長大了”,主要是發(fā)現(xiàn)自己成長與變化。通過觀察、比較小時候的照片和用品、播放錄像、交流分享、展示自己,使活動得到深化?;顒拥碾y點(diǎn)是:根據(jù)人的成長過程進(jìn)行排序、制作個人成長冊,主要是通過自主操作,在動手的過程中培養(yǎng)手部肌肉的靈活性和提高排序的能力,對自己的成長充滿了期待。在目標(biāo)定位上,樹立了目標(biāo)的整合觀、科學(xué)觀、系統(tǒng)觀,各領(lǐng)域內(nèi)容有機(jī)聯(lián)系,相互滲透,注重綜合性、趣味性、活動性,寓教育于生活、游戲中。因此,我作了以下活動準(zhǔn)備:(1)空間準(zhǔn)備:幼兒小時候的照片、衣物、用品布置于墻上,桌椅呈同字型便于評價和集中。(2)物質(zhì)準(zhǔn)備:“人的成長過程”圖片,卡片紙、彩筆、彩紙、剪刀、膠水等美工材料與工具若干,已制作本領(lǐng)樹的樹干,小時候的錄像(或小中班在園的錄像),胎兒的生長發(fā)育以及新生兒的養(yǎng)育的錄像。(3)知識準(zhǔn)備:幼兒向家長了解爸爸媽媽的故事及自己小時候的趣事,觀察各個階段自己成長的照片,熟悉人物主要特征。
2、學(xué)會按要求向指定方向跑和跳,并能有序地擺放小椅子。 3、在音樂游戲中,注意傾聽音樂,并遵守游戲規(guī)則?! ?活動準(zhǔn)備: 1、音樂磁帶、 2、相距 40厘米 的平行線2條,兩個大圓圈?! ?3、幼兒人手一張小椅子?! ?活動過程: 一、音樂游戲:數(shù)高樓 教師帶領(lǐng)幼兒站成大圓圈,請4—6位幼兒扮演弟弟、妹妹站在圈外,引導(dǎo)幼兒隨著音樂開展游戲活動。
活動準(zhǔn)備:1、情景布置:線的天地(各種各樣的線)2、實物:紅、白兩種絨線團(tuán),一對棒針。用紅、白兩種絨線編織成的白底紅十字圖案的編織品?;顒舆^程:一、參觀“線的天地”,各種線的用途。二、出示紅白兩種絨線團(tuán),棒針,激發(fā)幼兒的興趣。教師講第一、二、三段故事,提問:1、故事里有誰?他們?nèi)ジ墒裁矗?、紅圓圓和白團(tuán)團(tuán)都說了些什么?討論:紅圓圓和白團(tuán)團(tuán)走但荒野,發(fā)生了什么事?(讓幼兒想象,自由討論)并讓幼兒續(xù)編。三、教師講完整個故事,提問:1、紅圓圓和白團(tuán)L'cd歐⑸氖賂忝墻駁氖遣皇且謊f2、她們在路上遇到什么?她們是怎么做的?3、最后,她們怎樣了?4、我們聽了這個故事,懂得了什道理?四、請幼兒分角色白哦眼并復(fù)述。五、師生小結(jié):同伴之間應(yīng)該互相幫忙、互相關(guān)心。
活動對象:中班幼兒 活動材料:白紙、彩筆、各種彩紙、膠水、自制信封和信封玩偶各5—6個(五六種不同的裝飾風(fēng)格) 活動價值:1、引導(dǎo)幼兒學(xué)習(xí)制作信封,變成玩偶進(jìn)行裝飾。發(fā)展幼兒創(chuàng)新能力?! ? 2、培養(yǎng)幼兒良好的操作習(xí)慣,能收拾整理材料?! 』顒臃椒ǎ? 1、老師出示自制信封,讓幼兒猜猜是怎么做出來的。 2、看圖示,老師演示信封的做法,
2、學(xué)習(xí)用多種顏色進(jìn)行手指點(diǎn)畫。活動準(zhǔn)備:1、教具準(zhǔn)備:(1)桌面木偶:未上色的魚媽媽一只、魚寶寶若干,海底世界布景;(2)紅、黃、藍(lán)顏料、抹布、每組一份;回形針、繩子每人一份;(3)范例若干;(4)錄音機(jī)一臺,歌曲《捉魚》磁帶一盒。2、知識經(jīng)驗準(zhǔn)備:(1)幼兒已熟悉歌曲《捉魚》;(2)幼兒已有初步的指點(diǎn)畫經(jīng)驗。
2、進(jìn)一步培養(yǎng)幼兒的口語表達(dá)能力。二、活動準(zhǔn)備: 背景圖一張;磁性教具:四只螞蟻 樹葉 小船 一條大青蟲 四個小傘兵;螞蟻頭飾數(shù)量和幼兒人數(shù)一樣多;蒲公英、青蟲頭飾各一個;配樂故事磁帶。活動過程:(一)出示“螞蟻”,引出主題。1、看,它是誰?(小螞蟻)你們喜歡小螞蟻嗎?2、今天我就來講一個小螞蟻的故事。故事的名字叫蒲公英媽媽和小螞蟻。(二)欣賞故事《蒲公英媽媽和小螞蟻》。1、教師有表情的講述故事。講述故事后提問:1)故事的名字叫什么?2)故事里有誰和誰?2、出示背景圖,教師邊演示教具邊講故事。講述過程中提問:1)小河的對岸住著誰?2)一陣大風(fēng)吹來,小螞蟻坐的樹葉小船怎么了?3)野地里有什么?它是什么樣子的?4)蒲公英是怎樣對待小螞蟻的?5)小螞蟻說了些什么?蒲公英媽媽又說了些什么?6)蒲公英媽媽為什么很感激小螞蟻?7)小螞蟻是怎樣回到自己家的?8)這個故事告訴了我們一個什么道理?