提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版新課標(biāo)小學(xué)數(shù)學(xué)五年級上冊身份證號碼的秘密說課稿

  • 人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的概念及其幾何意義教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的概念及其幾何意義教學(xué)設(shè)計

    新知探究前面我們研究了兩類變化率問題:一類是物理學(xué)中的問題,涉及平均速度和瞬時速度;另一類是幾何學(xué)中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學(xué)科領(lǐng)域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為__________),記作f ′(x0)或________,即

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (2) 教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (2) 教學(xué)設(shè)計

    二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計息,存4個季度,則當(dāng)每季度利率為多少時,按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項和公式   (1) 教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項和公式 (1) 教學(xué)設(shè)計

    新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(1)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(1)教學(xué)設(shè)計

    我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應(yīng)用它們解決實際問題和數(shù)學(xué)問題,從中感受數(shù)學(xué)模型的現(xiàn)實意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(2)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(2)教學(xué)設(shè)計

    二、典例解析例3.某公司購置了一臺價值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設(shè)備的使用年限為10年,超過10年 ,它的價值將低于購進(jìn)價值的5%,設(shè)備將報廢.請確定d的范圍.分析:該設(shè)備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價值不小于(220×5%=)11萬元;10年后,該設(shè)備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設(shè)使用n年后,這臺設(shè)備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

  • 人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計

    情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項和公式(2)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項和公式(2)教學(xué)設(shè)計

    課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應(yīng)安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項和為S_n。

  • 人教版高中數(shù)學(xué)選修3二項式系數(shù)的性質(zhì)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3二項式系數(shù)的性質(zhì)教學(xué)設(shè)計

    1.對稱性與首末兩端“等距離”的兩個二項式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時,C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時,中間的一項C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項式系數(shù)最大的項為 ,在(a+b)9的展開式中,二項式系數(shù)最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數(shù)最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數(shù)最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項和公式   (2) 教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項和公式 (2) 教學(xué)設(shè)計

    二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點(diǎn)分別是第k個正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時,無限趨近于所有正方形的面積和

  • 人教版高中數(shù)學(xué)選擇性必修二函數(shù)的單調(diào)性(1)  教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二函數(shù)的單調(diào)性(1) 教學(xué)設(shè)計

    1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示

  • 數(shù)據(jù)的收集與整理 3 數(shù)據(jù)的表示教案教學(xué)設(shè)計

    數(shù)據(jù)的收集與整理 3 數(shù)據(jù)的表示教案教學(xué)設(shè)計

    創(chuàng)設(shè)情境,導(dǎo)入新課:你對母親知多少師問1:我們5月份剛過了一個重要的節(jié)日,你知道是什么嗎?----母親節(jié)。師問2:那你知道媽媽的生日嗎?(舉手示意),每個媽媽都知道自己孩子的生日,請不知道的同學(xué)回家了解一下,多關(guān)心一下自己的父母。師問3:那你知道媽媽最愛吃的菜嗎?你可以選擇知道、不知道或者是沒有愛吃的(拖動白板上相對應(yīng)的表情符號)。請大家用不同的手勢表示出來。我找3名同學(xué)統(tǒng)計各組的數(shù)據(jù),寫在黑板上(隨機(jī)找3名學(xué)生數(shù)人數(shù))。下面我來隨機(jī)采訪一下:你媽媽最喜歡吃的菜是什么?(教師隨機(jī)采訪,結(jié)合營養(yǎng)搭配和感恩教育)

  • 人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量的方差教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量的方差教學(xué)設(shè)計

    3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個投資項目的利潤率分別為隨機(jī)變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔(dān)風(fēng)險的投資者,投資A項目更合適.

  • 人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量的均值教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量的均值教學(xué)設(shè)計

    對于離散型隨機(jī)變量,可以由它的概率分布列確定與該隨機(jī)變量相關(guān)事件的概率。但在實際問題中,有時我們更感興趣的是隨機(jī)變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測驗中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績是否“兩極分化”則需要考察這個班數(shù)學(xué)成績的方差。我們還常常希望直接通過數(shù)字來反映隨機(jī)變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運(yùn)動員射中目標(biāo)靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當(dāng)n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運(yùn)動員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.

  • 人教版高中語文必修1《人性光輝:寫人要凸顯個性》說課稿2篇

    人教版高中語文必修1《人性光輝:寫人要凸顯個性》說課稿2篇

    人教版新課標(biāo)教材必修一的“表達(dá)交流”部分,有一個專題是“人性的光輝——寫人要凸顯個性”。其中的“寫法借鑒”部分列舉了兩則人物描寫實例,并歸納出人物描寫的幾個要點(diǎn)。其訓(xùn)練的思路和方法是很明顯的,但所列舉的人物描寫的實例卻不夠典型。而必修一第三單元正好是學(xué)習(xí)寫人記事散文,其中的兩篇自讀課文《記梁任公先生的一次演講》《金岳霖先生》又是寫人記事非常典型的文章,故而我嘗試將這兩篇文章作為實例和。寫人要凸顯個性。寫作指導(dǎo)結(jié)合起來教學(xué)。這樣設(shè)計還有一個目的,那就是解決課程改革中教學(xué)內(nèi)容多而課時緊張的矛盾,提高課堂教學(xué)效率。師:今天,我們一起來學(xué)習(xí)“寫人要凸顯個性”。這兩堂課分四個步驟來完成:一、先學(xué)習(xí)教材中關(guān)于寫人方法的介紹,約15分鐘;二、快速閱讀第三單元的《記梁任公先生的一次演講》和《金岳霖先生》兩篇文章,具體感受其寫人的方法,約30分鐘;

  • 中班科學(xué)課件教案:各種各樣的蛋

    中班科學(xué)課件教案:各種各樣的蛋

    通過觀察和操作活動課件產(chǎn)生探索各類蛋的興趣 知道鴨蛋、鵪鶉蛋、鴨蛋、烏龜?shù)昂臀伵5暗男螤睢㈩伾痛笮? 活動準(zhǔn)備: 數(shù)種不同的蛋(如:雞蛋、鴨蛋、皮蛋、茶葉蛋、鴕鳥蛋、鴿子蛋……).有關(guān)蛋的資料及課件。 活動過程: 1、事先請家長協(xié)助收集不同種類的蛋。 2、展示收集的蛋,請幼兒觀察各種蛋的形狀、大小和顏色,并加以比較。 3、讓幼兒操作活動課件,知道和認(rèn)識不同的蛋 4、將幼兒收集的蛋打(剝)開來,請幼兒看一看蛋里面是什么樣子,有什么不同的地方,為什么? 5、將熟蛋切開,和幼兒分享;生雞蛋則請大家輪流攪一攪,煮個蛋花湯。 活動評價: 能比較各種蛋的形狀、大小和顏色。 能說出蛋里面有什么。 延伸活動: 可以請幼兒帶一本有關(guān)蛋的書來幼兒園里和大家分享。 找一個晴朗的日子,您可以帶幼兒到園所附近的公園,請幼兒仔細(xì)地觀察樹葉或小池塘,或許會找到一些動物的蛋寶寶。

  • 中班科學(xué)課件教案:好玩的降落傘

    中班科學(xué)課件教案:好玩的降落傘

    2、通過試驗了解傘面大小對速度的影響。 活動準(zhǔn)備:  大小不一樣的降落傘人手一個、兩個同樣大小的小娃娃、大記錄表、貼紙 活動過程:一、出示兩個大小一樣的娃娃,引起幼兒的興趣  師:今天,老師給你們介紹兩位好朋友,他們倆一個叫歡歡,一個叫樂樂,歡歡和樂樂喜歡從空中跳下來的感覺,可他們覺得落下來的速度太快了,來不及看周圍的風(fēng)景,想請小朋友幫他們出個主意,怎樣可以令他們落得慢些?(幼兒討論……)

  • 中班科學(xué)課件教案:奇妙的鹽

    中班科學(xué)課件教案:奇妙的鹽

    2 培養(yǎng)幼兒對科學(xué)現(xiàn)象進(jìn)行探索的興趣. 準(zhǔn)備: 杯子若干,鹽,小蘇打,白醋,攪拌棒,土豆片 過程: 自由探索 1 這是什么?(教師出示一個土豆),我把它切成了土豆片,現(xiàn)在我要把土豆片放到水里去,你們猜猜會怎樣? 2 把土豆片放到水里會怎樣呢?我們來試一試. 3 我這還有三杯水,我又要把土豆放到水里去,這回會怎樣呢?(幼兒回答教師驗證) 引導(dǎo)發(fā)現(xiàn): 1 為什么這個杯子里的土豆片會浮起來呢? 2 老師幫你們準(zhǔn)備了一些東西,看看是什么?你是怎樣知道的?

  • 中班科學(xué)課件教案:不喝水的蠟

    中班科學(xué)課件教案:不喝水的蠟

    2、引導(dǎo)幼兒了解蠟不吸水的特性比較發(fā)現(xiàn)經(jīng)特殊加工后紙杯功用。重點(diǎn):目標(biāo)1所訴既重點(diǎn)。難點(diǎn):目標(biāo)2所訴既難點(diǎn)。二、活動準(zhǔn)備。1、三個大水盆裝滿水,紙、筆若干。每組一個一次性紙杯裝上水。2、幼兒每人事先折好一個小船。三、活動過程。(一)玩紙船。“請小朋友看看教室里有什么?”(水盆,水盆里有水)“你們想玩嗎?想想你要怎么玩。”幼兒討論后自由選擇地方玩。

  • 中班科學(xué)課件教案:落下來的物體

    中班科學(xué)課件教案:落下來的物體

    二、活動計劃與反思活動一:落下來啦(小班)活動要求:1、對物體落下來的現(xiàn)象感興趣,有初步的探索欲望。2、學(xué)習(xí)運(yùn)用語言、體態(tài)動作等表達(dá)自己的發(fā)現(xiàn),初步嘗試記錄?;顒訙?zhǔn)備:活動過程:1、小故事引發(fā)幼兒猜測:物體是否會落下來?以激發(fā)興趣。2、觀察材料,擺弄物體進(jìn)行感性探索體驗:它們是不是都落下來了?3、第二次探索,比較落體的不同方式。幼兒邊玩邊交流自己所玩的物體,觀察落下來的樣子,引導(dǎo)幼兒運(yùn)用語言、體態(tài)動作等表現(xiàn)自己的發(fā)現(xiàn)。4、學(xué)習(xí)記錄:觀察記錄表上貼的物體,引導(dǎo)幼兒選擇相應(yīng)物體嘗試后把該物體下落的樣子畫下來。5、延伸活動:玩落體游戲,如“托氣球、吹羽毛”等,啟發(fā)幼兒觀察更多落體現(xiàn)象,并想辦法使其落不下來。

  • 大班科學(xué)課件教案:動物的尾巴2

    大班科學(xué)課件教案:動物的尾巴2

    活動過程:一、游戲“猜尾巴”1、今天本來有很多動物朋友來跟我們做游戲,但是它們很淘氣,要和我們捉迷藏,讓我們來找它。出示各種動物的圖片(遮住身體露出尾巴)2、這些動物太粗心了,把頭和身體藏了起來,可是什么露出來了?——尾巴3、哎!尾巴在外面我們就能猜出它是誰?誰來猜猜看?!@是馬的尾巴,因為馬尾巴是長長的,像……——這是豹子尾巴,因為它身上有斑點(diǎn)出來吧,我們猜出你是誰啦!小結(jié):每種動物都有尾巴的,而這從它的尾巴的不同,我們就猜出它是誰。

上一頁123...217218219220221222223224225226227228下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動畫,PPT模板免費(fèi)下載,專注素材下載!