切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
3.下結論.依據(jù)均值和方差做出結論.跟蹤訓練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔風險的投資者,投資A項目更合適.
對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關事件的概率。但在實際問題中,有時我們更感興趣的是隨機變量的某些數(shù)字特征。例如,要了解某班同學在一次數(shù)學測驗中的總體水平,很重要的是看平均分;要了解某班同學數(shù)學成績是否“兩極分化”則需要考察這個班數(shù)學成績的方差。我們還常常希望直接通過數(shù)字來反映隨機變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運動員射中目標靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運動員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.
解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
一、 問題導學前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀錄和創(chuàng)紀錄的時間等,都是數(shù)值變量,數(shù)值變量的取值為實數(shù).其大小和運算都有實際含義.在現(xiàn)實生活中,人們經(jīng)常需要回答一定范圍內的兩種現(xiàn)象或性質之間是否存在關聯(lián)性或相互影響的問題.例如,就讀不同學校是否對學生的成績有影響,不同班級學生用于體育鍛煉的時間是否有差別,吸煙是否會增加患肺癌的風險,等等,本節(jié)將要學習的獨立性檢驗方法為我們提供了解決這類問題的方案。在討論上述問題時,為了表述方便,我們經(jīng)常會使用一種特殊的隨機變量,以區(qū)別不同的現(xiàn)象或性質,這類隨機變量稱為分類變量.分類變量的取值可以用實數(shù)表示,例如,學生所在的班級可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時候,這些數(shù)值只作為編號使用,并沒有通常的大小和運算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關聯(lián)性問題.
溫故知新 1.離散型隨機變量的定義可能取值為有限個或可以一一列舉的隨機變量,我們稱為離散型隨機變量.通常用大寫英文字母表示隨機變量,例如X,Y,Z;用小寫英文字母表示隨機變量的取值,例如x,y,z.隨機變量的特點: 試驗之前可以判斷其可能出現(xiàn)的所有值,在試驗之前不可能確定取何值;可以用數(shù)字表示2、隨機變量的分類①離散型隨機變量:X的取值可一、一列出;②連續(xù)型隨機變量:X可以取某個區(qū)間內的一切值隨機變量將隨機事件的結果數(shù)量化.3、古典概型:①試驗中所有可能出現(xiàn)的基本事件只有有限個;②每個基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點數(shù)X有哪些值?取每個值的概率是多少? 因為X取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.確定研究對象,明確哪個是解釋變量,哪個是響應變量;2.由經(jīng)驗確定非線性經(jīng)驗回歸方程的模型;3.通過變換,將非線性經(jīng)驗回歸模型轉化為線性經(jīng)驗回歸模型;4.按照公式計算經(jīng)驗回歸方程中的參數(shù),得到經(jīng)驗回歸方程;5.消去新元,得到非線性經(jīng)驗回歸方程;6.得出結果后分析殘差圖是否有異常 .跟蹤訓練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內的溫度x有關,現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關于x回歸方程為 且相關指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預測溫度為35℃時該種藥用昆蟲的產(chǎn)卵數(shù).(結果取整數(shù)).
(1)主人公大衛(wèi)·科波菲爾:大衛(wèi)·科波菲爾是《大衛(wèi)·科波菲爾》中的主人公,曾經(jīng)是個孤兒。作家描寫了他從孤兒成長為一個具有人道主義精神的資產(chǎn)階級民主主義作家的過程。他善良,誠摯,聰明,勤奮好學,有自強不息的勇氣、百折不回的毅力和積極進取的精神,在逆境中滿懷信心,在順境中加倍努力,終于獲得了事業(yè)上的成功和家庭的幸福。在這個人物身上寄托著狄更斯的道德理想。(2)《大衛(wèi)·科波菲爾》中的女性形象:在狄更斯筆下,《大衛(wèi)·科波菲爾》塑造了一個個有血有肉的人物形象,每個任務都給人留下了深刻的印象,尤其是成功塑造了不同性格、不同品德的女性形象:貝西姨婆、艾妮斯、佩葛蒂、克拉拉、朵拉、摩德斯通小姐、米考伯太太、艾米麗……貝西姨婆與摩德斯通小姐的對比,克拉拉、朵拉與艾妮斯的對比更使她們栩栩如生,對貝西姨婆、艾妮斯、佩葛蒂的愛就更深一層,對摩德斯通小姐更是恨之入骨,對朵拉、克拉拉既同情又氣憤。
教材分析改革開放后我國的綜合國力不斷增強,人民對祖國統(tǒng)一的愿望越來越迫切。本節(jié)課以“一國兩制”構想的提出,香港、澳門的回歸和海峽兩岸關系的發(fā)展為中心,說明實現(xiàn)祖國統(tǒng)一,完成中華民族復興是歷史發(fā)展的必然。第一目“‘一國兩制’構想的提出”主要講述了“一國兩制”的含義及歷史意義。第二目“香港、澳門的回歸”著重講述了香港回歸、澳門回歸的經(jīng)過及歷史意義,這是“一國兩制”成功的實踐。第三目“海峽兩岸關系的發(fā)展”講述了大陸注重發(fā)展與臺灣的關系,促進海峽兩岸的經(jīng)濟文化交流與合作,打破了幾十年來海峽兩岸的隔絕狀態(tài),促進了祖國統(tǒng)一的進程。此外,教材還通過“資料回放”“歷史縱橫”“學思之窗”等欄目,為學生學習提供了一些詳細的史料。在教學中要分析圖表資料,引導學生理解完成祖國統(tǒng)一大業(yè),實現(xiàn)中華民族的復興,是任何人也阻擋不了的歷史潮流。
【課后研討】當互聯(lián)網(wǎng)正大踏步走進人類生活的時候,人們對網(wǎng)絡作用的認識似乎還是模糊不清。一種意見認為,作為中學生,他們上網(wǎng)的機會很多,互聯(lián)網(wǎng)向他們展示了各類知識結構,網(wǎng)絡為他們提供了大量信息,又給他們提供了一個接觸社會的個性化和國際化的空間,給了他們一個展示自身能力的大舞臺,所以他們對于知識選擇的靈活性大大增加,學習的主動性也大大提高,學習的內容自然大大超出了狹隘的課本范圍,這對于學生能力的提高應是大有裨益的。另一種意見認為,網(wǎng)絡的出現(xiàn)無疑為推進素質教育提供了一塊綠洲.但部分中學生上網(wǎng)更多的是為了消遣和娛樂,因為網(wǎng)絡--這個完全虛擬的世界是他們放松自己的最佳場所。同時也許正基于這一點,家長和師長才會對中學生上網(wǎng)出現(xiàn)不同程度的抵制,因為他們認為網(wǎng)上娛樂分散了他們過多的精力,會對學業(yè)造成影響;更為重要的是,他們害怕網(wǎng)絡上的不良信息對他們的身心不利。
4.海洋污染(1)閱讀書本P64,由學生歸納:(2)展示圖片資料:“威望號油輪泄漏事故”【討論】石油污染將對該海區(qū)的生態(tài)環(huán)境造成怎樣的影響?【小結】本節(jié)課我們從四個方面了解了洋流對地 理環(huán)境和人類活動的影響,重點學習洋流對氣候和對漁場形成的影響。同學們聽說過“厄爾尼諾”現(xiàn)象嗎?“厄爾尼諾”現(xiàn)象會影 響秘魯漁場的漁獲量;也會對氣候產(chǎn)生影響,導致全球氣候異常?!禾骄俊吧衿娴亩驙柲嶂Z”現(xiàn)象』學習小組交流【小結】“厄爾尼諾”現(xiàn)象還有許多不解之謎,其中之一是形成原因,尚未能解釋清楚。有人認為是南半球東南信風減弱造成的,也有人認為是大氣環(huán)流減弱造成的結果;且“厄爾 尼諾”現(xiàn)象發(fā)生有沒有自身的規(guī)律?發(fā)生周期長短受什么制約?等等,這些謎團等待我們去一一解開。
1、中國三大自然區(qū)的空間位置和基本特征。2、中國自然區(qū)域差異對人類活動的影響?!糁匾獔D釋圖1.1“三大自然區(qū)圖”三大自然區(qū)的界線(自然地理分界):西北干旱半干旱區(qū)與東部季風區(qū)之間大致以400mm等年降水量線為界,青藏高寒區(qū)與東部季風區(qū)約以3000米等高線為界,青藏高寒區(qū)與西北干旱半干旱區(qū)以昆侖山——阿爾金山——祁連山為界?!緦W習策略】1、讀圖分析:通過讀圖、分析、歸納的方法,識記三大自然區(qū)的空間位置、相互界線,理解各自然地理要素的特征和空間分布規(guī)律。2、綜合訓練:運用空白地圖,將地理事物落實在圖上,并進行比較分析、歸納整理,理解三大自然區(qū)的區(qū)域差異?!窘虒W內容】一、三大自然區(qū)的劃分1.三大自然區(qū)的劃分依據(jù)(地貌、氣候的地域差異)
預設 示例:(1)斯科特,寒冷的冰雪雖然凍住了你的身體,但它卻凍不住你那高尚無比的靈魂。(2)威爾遜博士,兇猛的暴風雪只是帶走了你的身軀,卻沒有帶走你那熱愛科學、無私奉獻的精神和對祖國的那份深沉的愛。2.以史明鑒,暢寫啟示。(1)暢寫啟示。師:作者在課文結尾滿懷深情地寫道:“一個人雖然在同不可戰(zhàn)勝的厄運的搏斗中毀滅了自己,但他的心靈卻因此變得無比高尚。所有這些在一切時代都是最偉大的悲劇?!甭?lián)系實際,說說你所知道的“偉大的悲劇式”的人物或事件,這些人物或事件對你有什么啟示?把自己的想法寫出來。(2)引導交流?!皞ゴ蟮谋瘎∈健钡娜宋锘蚴录捌鋯⑹荆菏纠唬好绹暮教祜w機“挑戰(zhàn)者號”在升空約72秒后突然爆炸,機上7名宇航員全部罹難。
2.明確順序,整合信息(1)根據(jù)文章描寫的大雁歸來的旅程,可以看出本文是按什么說明順序來寫的?提示:抓住時間詞、空間詞、事物的發(fā)展變化的語句來理清結構,判斷說明順序。預設 本文大致是按時間順序來寫的。(2)大雁的行為是如此豐富,作者的觀察是這樣細致,請同學們分別按不同角度把找到的有關大雁行為的信息分類,看看能發(fā)現(xiàn)什么。自讀任務二將找到的有關大雁行為的信息,按旅程遠近、棲息地、組隊、覓食、“集會”與鳴叫等進行分類整理。整理后,你發(fā)現(xiàn)了什么?(小組任選一個方面,分類整理,全班交流)預設 示例:旅程遠近——直線飛行200英里——堅強、守信;棲息地——沼澤地、池塘邊——充滿靈性;組隊、覓食、“集會”與鳴叫等——具有團結精神,互相關愛?!驹O計意圖】本環(huán)節(jié)學生自主閱讀,獲取信息,把握文章寫作的順序;然后整合歸納信息,進而激發(fā)學生探討大雁的興趣,為后面深入閱讀做鋪墊。
【設計意圖】學習事理說明文,要讓學生在自主歸納的過程中,初步感知事理說明文說明“事理”這一基本特點,把握事理說明文和事物說明文的不同之處。引導學生通過學習課文,對科學方法產(chǎn)生自己的體會,并運用到自己的思考中。四、總結存儲1.教師小結本文是一篇事理說明文,作者把一門科學——物候學介紹得淺顯易懂,饒有趣味。全文采用邏輯順序說明,思路清晰明了:描述物候現(xiàn)象——做出科學解釋——追究因果關系——闡述研究意義。這種從現(xiàn)象到本質的認識方法和行文思路值得我們學習。本文語言嚴謹而生動,兼具說明的科學性和生動性,是一篇極有價值的科普文,是科學家竺可楨科學精神和科學思想的具體體現(xiàn)。文章啟發(fā)我們:科學距離我們并不遙遠,就在我們的身邊,而想要探索它,就要有科學精神,擴大科學知識儲備,掌握科學方法,勇于探索科學奧秘。
同學們回答都很好。北京時間2021年6月17日9時22分,搭載神舟十二號載人飛船的長征二號F遙十二運載火箭,在酒泉衛(wèi)星發(fā)射中心準時點火發(fā)射,約573秒后,神舟十二號載人飛船與火箭成功分離,進入預定軌道,順利將聶海勝、劉伯明、湯洪波3名航天員送入太空,發(fā)射取得圓滿成功。這是中國載人航天工程立項實施以來的第19次飛行任務,也是空間站階段的首次載人飛行任務。2021年6月17日18時48分,航天員聶海勝、劉伯明、湯洪波先后進入天和核心艙,標志著中國人首次進入自己的空間站。7月4日,神舟十二號航天員進行中國空間站首次出艙活動。目前,三名航天員進駐核心艙后,執(zhí)行天地同步作息制度進行工作生活,按照計劃,駐留約3個月后,將搭乘飛船返回艙返回東風著陸場。下面,請同學們觀看“神舟十二號載人飛船”有關科普視頻。
(一)關于疫情防控的幼兒安全教育1、班主任跟幼兒強調在校的日常防護措施,堅持佩戴口罩,保持手衛(wèi)生及時消毒,定時開窗通風以及做好自我健康監(jiān)測、就餐等問題,若有發(fā)熱、咳嗽等癥狀及時上報。2、午餐期間,實行一人一桌,保證學生不密集、不扎堆。3、謹記“常通風、勤洗手、戴口罩、少出門”預防新冠肺炎12字訣。(二)關于疫情防控的幼兒心理教育1、提醒幼兒不造謠、不傳謠、不信謠。2、引導幼兒堅決克服僥幸心理,提高警惕。(三)關于疫情防控的幼兒健康教育1、鼓勵學生以積極參加體育文藝活動,提高身體素質。2、在日常生活中要注意個人衛(wèi)生,保持環(huán)境清潔,經(jīng)常鍛煉身體。3、積極接種新冠疫苗。
在“我愛我家”主題開展過程中,我們?yōu)橛變簞?chuàng)設了一種家的氛圍,讓幼兒產(chǎn)生愛的體驗。我想,音樂活動也可以配合這一主題,豐富幼兒的情感。因此,我就想以大頭兒子和小頭爸爸這兩個幼兒耳熟能詳?shù)膭赢嬋宋餅橹魅斯?,?chuàng)設一個活動情景作為本次活動的載體。一方面,活動中的律動動作大部分是雙人動作,如親一親、抱一抱、壓蹺蹺板等,既能在日常生活中幼兒與父母身上找到痕跡,又能體現(xiàn)親子感情,所以用大頭兒子和小頭爸爸貫穿整個活動,可以自然地激發(fā)幼兒對家人、對親情的認知和體驗。
一、班會目的進一步推動科普教育,營造講科學、愛科學、學科學、用科學的濃厚氛圍,激發(fā)學生創(chuàng)新熱情和創(chuàng)造活力,促進學生科學素質不斷提升,激勵同學們向航天工作者學習,培養(yǎng)學生的科學精神和愛國主義精神,立志奮發(fā)學習,為祖國的繁榮富強做貢獻。