由于三角函數是刻畫周期變化現象的數學模型,這也是三角函數不同于其他類型函數的最重要的地方,而且對于周期函數,我們只要認識清楚它在一個周期的區(qū)間上的性質,那么它的性質也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數的定義、三角函數值之間的內在聯系性等來作圖,從畫出的圖形中觀察得出五個關鍵點,得到“五點法”畫正弦函數、余弦函數的簡圖.課程目標1.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯系. 數學學科素養(yǎng)1.數學抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯系; 3.直觀想象:正弦函數余弦函數的圖像; 4.數學運算:五點作圖; 5.數學建模:通過正弦、余弦圖象圖像,解決不等式問題及零點問題,這正是數形結合思想方法的應用.
指數函數與冪函數是相通的,本節(jié)在已經學習冪函數的基礎上通過實例總結歸納指數函數的概念,通過函數的三個特征解決一些與函數概念有關的問題.課程目標1、通過實際問題了解指數函數的實際背景;2、理解指數函數的概念和意義.數學學科素養(yǎng)1.數學抽象:指數函數的概念;2.邏輯推理:用待定系數法求函數解析式及解析值;3.數學運算:利用指數函數的概念求參數;4.數學建模:通過由抽象到具體,由具體到一般的思想總結指數函數概念.重點:理解指數函數的概念和意義;難點:理解指數函數的概念.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入在本章的開頭,問題(1)中時間 與GDP值中的 ,請問這兩個函數有什么共同特征.要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.
1.探究:根據基本事實的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個平面,由此可以想到,如果一個平面內有兩條相交或平行直線都與另一個平面平行,是否就能使這兩個平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個平面內有兩條平行直線與另一個平面平行,這兩個平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個平面內有兩條相交直線與另一個平面平行,這兩個平面是平行的,如圖,平面ABCD內兩條相交直線A’C’,B’D’平行。
問題導入:問題一:試驗1:分別拋擲兩枚質地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因為兩枚硬幣分別拋擲,第一枚硬幣的拋擲結果與第二枚硬幣的拋擲結果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計算試驗1中的P(A),P(B),P(AB),你有什么發(fā)現?在該試驗中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗2:一個袋子中裝有標號分別是1,2,3,4的4個球,除標號外沒有其他差異。
新知探究:向量的減法運算定義問題四:你能根據實數的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉化為向量的加法來進行:減去一個向量相當于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號語言:任意a?α,都有l(wèi)⊥a?l⊥α.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.
6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F分別是AB,CD的中點.若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點O,連接OE,OF,如圖?!逧,F分別是AB,CD的中點,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當∠EOF=60°時,EF=OE=OF=1,當∠EOF=120°時,取EF的中點M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
2學情分析 本課是廣西版小學三年級上冊美術第十七課的內容,是一節(jié)繪畫課,屬于課程目標中造型.表現的學習領域。在這一節(jié)課里,要求學生學會制作立體或半立體的昆蟲。生活在大自然里的昆蟲,形體可愛、色彩艷麗、種類繁多。本科融自然學科知識和美術學科知識為一體,通過引導學生欣賞昆蟲的形體、色彩、生理結構,教會學生甄別昆蟲。利用學生喜愛昆蟲的特點,引導學生運用圓形、半圓形、橢圓形等幾何圖形等幾何形體,并采用對折、剪貼的方法制作小昆蟲。激發(fā)學生豐富的想象力和創(chuàng)造愿望。
2學情分析在這節(jié)課中,我恰當地運用多種教學手段,利用學生及教師自身的優(yōu)勢,在課堂上師生共同參與教學活動,充分發(fā)揮了學生的主體作用,使每個學生都成為學習活動的主人,從中獲得許多新鮮的感受。本設計從課題入手,設謎導入,通過畫一畫,引導學生抓住生肖動物的外形特征,要學生利用身邊各種材料,設計制作出自己喜愛的或自己的生肖工藝品,讓學生感受中國傳統(tǒng)文化的源遠流長。
3教學過程活動1【導入】一、創(chuàng)設情境,激活情趣導入 1、拍一拍,唱一唱:播放《時間就像小馬車》音樂視頻,學生跟著一邊打節(jié)拍一邊唱。2、想一想:師:同學們,剛才這首歌和時間有關,那關于時間,你想到了什么?3、引出課題:除了車輪的圓形鐘表之外,生活中還有很多形狀奇特的鐘表,你們想不想一起來看看啊?今天,老師就領著大家一起來逛逛這個小小鐘表店吧。(板書課題:小小鐘表店)
2學情分析 新入學的學生第一次接觸正規(guī)化的美術課,對一年級學生來說是新 奇、有趣、好玩的,而且新生入學前所受的教育各不相同,心理因素 也不一樣,在繪畫上、工藝制作上一定有著自己的創(chuàng)造思維、想象能 力和自己的個性,但這些會造成學習的不一致性、習慣不統(tǒng)一化,給 美術課的課堂帶來不必要的麻煩。因此, 對待這些剛進入課堂的小朋友, 我們在情感態(tài)度上要做出很大 的努力,小學生在思維的想象力、創(chuàng)造力方面發(fā)展的空間很大,所以 我們要好好把握機會, 激發(fā)孩子們對美術學習的興趣,讓孩子們能發(fā) 現美,有創(chuàng)造美的想法。
2學情分析 一年級的小朋友比較好動,撕紙對于他們來說比用彩筆作畫更加自由、隨意,簡便易行,且更加生動、自然,更能體現稚拙、率真的天性,釋放自己。通過大膽的撕紙來表達心中所想,培養(yǎng)學生的創(chuàng)造和動手能力。3重點難點 重點:通過撕紙拼貼的方法表現一種動物難點:撕的方法
二.教學重、難點:利用身邊材料設計制作一個鑰匙掛飾。掛飾形式的構思創(chuàng)意。三.教具準備:教具學具及多媒體應用,彩陶、小刀等。四.教學過程:(一)導入設問:同學們,你們知道為什么越來越多的人喜歡在自己的鑰匙上掛上小掛飾嗎?比如像這樣的……(馬上出示各式各樣的掛飾圖片欣賞)
3學情分析 鼓的歷史很悠久,中國在原始社會時期就有了鼓。古時候,鼓曾被廣泛用于祭祀、戰(zhàn)爭、宗教等場合。在現代,鼓也廣泛應用于生活的各個領域,如生活娛樂、節(jié)日慶典,人們用它來表達思想、抒發(fā)感情。把鼓作為學習內容,目的是讓學生通過本課知識的學習,大略知道鼓的來源和作用等有關鼓的文化知識,學習表現打鼓的動態(tài),更好的體驗美術造型表現的樂趣,增加民族自豪感。4重點難點 教學重點:學習運用繪畫語言創(chuàng)作少數民族同胞打鼓的形象。教學難點:在創(chuàng)作中大膽的、形象的表現出活靈活現的人物動態(tài)。
2教學目標1、初步了解鼓的文化,激發(fā)學生熱愛我國民間民俗文化。2、用繪畫的方式表現人物動態(tài)。3重點難點教學重點:學習運用繪畫語言創(chuàng)作少數民族同胞打鼓的熱鬧場景。教學難點:畫面線形的把握和構圖安排,顏色的搭配。
教學目標 知識目標:通過欣賞大自然的圖片,感知大自然不同特點的美。 技能目標:能用自己喜歡的方式表達對不同自然美的感受?! ∏楦袘B(tài)度與價值觀:培養(yǎng)學生熱愛大自然的情感,及愛護大自然的情感?! 〗虒W重點讓學生感受大自然不同的美,了解大自然的豐富,并能用簡單的語言表達自己的感受?! 〗虒W難點學習用審美的眼光去觀察大自然。 主要教法啟發(fā)引導法、自學嘗試法 學習指導體驗探究法輔助指導法 教學資源教師:教材、課件?! W生:教材、自然風光片 教學過程: 教學活動教學意圖 教師學生
本節(jié)課是在學習了三角函數圖象和性質的前提下來學習三角函數模型的簡單應用,進一步突出函數來源于生活應用于生活的思想,讓學生體驗一些具有周期性變化規(guī)律的實際問題的數學“建?!彼枷?從而培養(yǎng)學生的創(chuàng)新精神和實踐能力.課程目標1.了解三角函數是描述周期變化現象的重要函數模型,并會用三角函數模型解決一些簡單的實際問題.2.實際問題抽象為三角函數模型. 數學學科素養(yǎng)1.邏輯抽象:實際問題抽象為三角函數模型問題;2.數據分析:分析、整理、利用信息,從實際問題中抽取基本的數學關系來建立數學模型; 3.數學運算:實際問題求解; 4.數學建模:體驗一些具有周期性變化規(guī)律的實際問題的數學建模思想,提高學生的建模、分析問題、數形結合、抽象概括等能力.
(六)說教學策略1.專題性海量的媒介信息必須加以選擇或者整合,以項目為依據,進行信息篩選,形成專題性閱讀與交流;培養(yǎng)學生對文本信息“化零為整”的能力,提升跨媒介閱讀與交流學習的充實感。2.情境化情境教學應指向學生的應用,建構富有符合時代氣息的內容,與生活經驗更加貼合,對學生的語言建構與運用有所提升,在情境中能夠有效地進行交流。3.任務化以任務為導向的序列化學習,可以為學生構建學習路線圖、學習框架等具體任務引導;或以跨媒介的認識與應用為任務的設置引導;甚至以閱讀和交流作為序列化安排的實踐引導。4.整合性跨媒介閱讀與交流是結合線上線下的資源,形成新的“超媒介”,也能實現對信息進行“深加工”,多種媒介的信息整合只為一個核心教學內容服務。5.互文性語言文字是語文之生命,我們是立足于語言文字的探討,音樂、圖像、視頻等文本與傳統(tǒng)語言文字文本形成互文,觸發(fā)學生對學習內容立體化和具體化的感悟,提升學生的審美能力。
《函數的單調性與最大(小)值}》系人教A版高中數學必修第一冊第三章第二節(jié)的內容,本節(jié)包括函數的單調性的定義與判斷及其證明、函數最大(小)值的求法。在初中學習函數時,借助圖像的直觀性研究了一些函數的增減性,這節(jié)內容是初中有關內容的深化、延伸和提高函數的單調性是函數眾多性質中的重要性質之一,函數的單調性一節(jié)中的知識是前一節(jié)內容函數的概念和圖像知識的延續(xù),它和后面的函數奇偶性,合稱為函數的簡單性質,是今后研究指數函數、對數函數、冪函數及其他函數單調性的理論基礎;在解決函數值域、定義域、不等式、比較兩數大小等具體問需用到函數的單調性;同時在這一節(jié)中利用函數圖象來研究函數性質的救開結合思想將貫穿于我們整個高中數學教學。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。