在探究估算方法的時(shí)候,教師要注重適時(shí)的引導(dǎo),以免讓學(xué)生無(wú)從下手.在教學(xué)過(guò)程中一定要讓學(xué)生體會(huì)估算的實(shí)用價(jià)值,了解到“數(shù)學(xué)既來(lái)源與生活,又回歸到生活為生活服務(wù)”.(二)課堂評(píng)價(jià)的一些思考在教學(xué)中要多鼓勵(lì)學(xué)生用自己的語(yǔ)言表達(dá)他們的想法,在估算的過(guò)程中多給予適當(dāng)?shù)囊龑?dǎo)和評(píng)價(jià),讓學(xué)生逐步把握估算的方法,找到解決問(wèn)題的信心.比如對(duì)“畫(huà)能掛上去嗎”這個(gè)問(wèn)題情境,學(xué)生可能提出不同的看法,有些學(xué)生可能認(rèn)為可以掛上去,因?yàn)槿诉€有身高,完全可以彌補(bǔ)梯子穩(wěn)定擺放的高度和掛畫(huà)位置的高度之間的差距,有些學(xué)生可能認(rèn)為,人不可能爬到梯子的頂部,加上人如果本來(lái)比較矮,畫(huà)就不能掛上去等等想法,教師都應(yīng)該給予肯定,這樣才能激發(fā)學(xué)生思考問(wèn)題的熱情,調(diào)動(dòng)學(xué)生探究問(wèn)題的積極性.作為教師,一定要尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,鼓勵(lì)探究方式、表達(dá)方式和解題方法的多樣化.
② 命題的含義:判斷一件事情的句子,叫做命題,如果一個(gè)句子沒(méi)有對(duì)某一件事情作出任何判斷,那么它就不是命題.活動(dòng)目的:通過(guò)課后的總結(jié),使學(xué)生對(duì)定義、命題等概念有更清楚的認(rèn)識(shí),讓學(xué)生在頭腦中對(duì)本節(jié)課進(jìn)行系統(tǒng)的歸納與整理.教學(xué)效果:學(xué)生在有了前面對(duì)定義、特別是命題概念的學(xué)習(xí)后,能了解命題的結(jié)構(gòu),以及哪些是命題,使學(xué)生對(duì)命題的學(xué)習(xí)有了清楚的認(rèn)識(shí)。第五環(huán)節(jié) 課后練習(xí)學(xué)習(xí)小組搜集八年級(jí)數(shù)學(xué)課本中的新學(xué)的部分定義、命題,看誰(shuí)找得多.四、教學(xué)反思本節(jié)課的設(shè)計(jì)具有如下特點(diǎn):(1)采用了“小品表演”的形式引入新課,意在激起學(xué)生對(duì)數(shù)學(xué)的興趣,讓學(xué)生知道,數(shù)學(xué)不是枯燥無(wú)味的。并能從表演中不同的人對(duì)“黑客”這個(gè)名詞的不同理解更好地悟出“定義”的含義。
第一環(huán)節(jié):回顧引入活動(dòng)內(nèi)容:①什么叫做定義?舉例說(shuō)明.②什么叫命題?舉例說(shuō)明. 活動(dòng)目的:回顧上節(jié)知識(shí),為本節(jié)課的展開(kāi)打好基礎(chǔ).教學(xué)效果:學(xué)生舉手發(fā)言,提問(wèn)個(gè)別學(xué)生.第二環(huán)節(jié):探索命題的結(jié)構(gòu)活動(dòng)內(nèi)容:① 探討命題的結(jié)構(gòu)特征觀察下列命題,發(fā)現(xiàn)它們的結(jié)構(gòu)有什么共同特征?(1)如果兩個(gè)三角形的三條邊對(duì)應(yīng)相等,那么這兩個(gè)三角形全等.(2)如果一個(gè)三角形是等腰三角形,那么這個(gè)三角形的兩個(gè)底角相等.(3)如果一個(gè)四邊形的一組對(duì)邊平行且相等,那么這個(gè)四邊形是平行四邊形.(4)如果一個(gè)四邊的對(duì)角線相等,那么這個(gè)四邊形是矩形.(5)如果一個(gè)四邊形的兩條對(duì)角線互相垂直,那么這個(gè)四邊形是菱形.② 總結(jié)命題的結(jié)構(gòu)特征(1)上述命題都是“如果……,那么……”的形式.(2)“如果……”是已知的事項(xiàng),“那么……”是由已知事項(xiàng)推斷出的結(jié)論.
【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關(guān)于字母系數(shù)的方程組,解方程組即可.三、板書(shū)設(shè)計(jì)解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學(xué)生的探究有很好的認(rèn)知基礎(chǔ),探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導(dǎo)學(xué)生充分思考和體驗(yàn)轉(zhuǎn)化與化歸思想,增強(qiáng)學(xué)生的觀察歸納能力,提高學(xué)生的學(xué)習(xí)能力.
一、情境導(dǎo)入神舟十號(hào)是中國(guó)神舟號(hào)系列飛船之一,主要由推進(jìn)艙(服務(wù)艙)、返回艙、軌道艙組成.神舟十號(hào)在酒泉衛(wèi)星發(fā)射中心“921工位”,于2013年6月11日17時(shí)38分02.666秒發(fā)射,由長(zhǎng)征二號(hào)F改進(jìn)型運(yùn)載火箭(遙十)“神箭”成功發(fā)射.在軌飛行十五天左右,加上發(fā)射與返回,其中停留天宮一號(hào)十二天,共搭載三位航天員——聶海勝、張曉光、王亞平.6月13日與天宮一號(hào)進(jìn)行對(duì)接.6月26日回歸地球.要讀懂這段報(bào)導(dǎo),你認(rèn)為要知道哪些名稱和術(shù)語(yǔ)的含義?二、合作探究探究點(diǎn)一:定義 下列語(yǔ)句屬于定義的是()A.明天是晴天B.長(zhǎng)方形的四個(gè)角都是直角C.等角的補(bǔ)角相等D.平行四邊形是兩組對(duì)邊分別平行的四邊形解析:作出正確選擇的關(guān)鍵是理解定義的含義.A是對(duì)天氣的預(yù)測(cè),B是描述長(zhǎng)方形的性質(zhì),C是描述補(bǔ)角的性質(zhì).只有D符合定義的概念.故選D.方法總結(jié):定義指的是對(duì)術(shù)語(yǔ)和名稱的含義的描述,是對(duì)一個(gè)事物區(qū)分于其他事物的本質(zhì)特征的描述,而不是對(duì)其性質(zhì)的判斷.
一、情境導(dǎo)入上一節(jié)課我們做過(guò):由兩個(gè)邊長(zhǎng)為1的小正方形,通過(guò)剪一剪,拼一拼,得到一個(gè)邊長(zhǎng)為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無(wú)理數(shù).在前面我們學(xué)過(guò)若x2=a,則a叫做x的平方,反過(guò)來(lái)x叫做a的什么呢?二、合作探究探究點(diǎn)一:算術(shù)平方根的概念【類型一】 求一個(gè)數(shù)的算術(shù)平方根求下列各數(shù)的算術(shù)平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術(shù)平方根的定義求非負(fù)數(shù)的算術(shù)平方根,只要找到一個(gè)非負(fù)數(shù)的平方等于這個(gè)非負(fù)數(shù)即可.解:(1)∵82=64,∴64的算術(shù)平方根是8;(2)∵(32)2=94=214,∴214的算術(shù)平方根是32;(3)∵0.62=0.36,∴0.36的算術(shù)平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術(shù)平方根是3.方法總結(jié):(1)求一個(gè)數(shù)的算術(shù)平方根時(shí),首先要弄清是求哪個(gè)數(shù)的算術(shù)平方根,分清求81與81的算術(shù)平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個(gè)非負(fù)數(shù)的算術(shù)平方根常借助平方運(yùn)算,因此熟記常用平方數(shù)對(duì)求一個(gè)數(shù)的算術(shù)平方根十分有用.
2.法解二元一次方程組,是提升學(xué)生求解二元一次方程的基本技能課,在例題的設(shè)置上充分體現(xiàn)化歸思想.2.在學(xué)習(xí)二元一次方程組的解法中,關(guān)鍵是領(lǐng)會(huì)其本質(zhì)思想——消元,體會(huì)“化未知為已知”的化歸思想.因而在教學(xué)過(guò)程中教師通過(guò)對(duì)問(wèn)題的創(chuàng)設(shè),鼓勵(lì)學(xué)生去觀察方程的特點(diǎn),在過(guò)手訓(xùn)練中提高學(xué)生的解答正確率和表達(dá)規(guī)范性,提升學(xué)生學(xué)會(huì)數(shù)學(xué)的信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.3.通過(guò)精心設(shè)計(jì)的問(wèn)題,引導(dǎo)學(xué)生在已有知識(shí)的基礎(chǔ)上,自己比較、分析得出二元一次方程組的解法,在鞏固訓(xùn)練活動(dòng)中,加深學(xué)生對(duì)“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過(guò)渡自然。讓學(xué)生深刻的體會(huì)到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過(guò)“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學(xué)生掌握知識(shí)、技能和方法,提高學(xué)習(xí)效率,而且還加深了對(duì)數(shù)學(xué)中通性和通法的認(rèn)識(shí),體會(huì)學(xué)習(xí)數(shù)學(xué)和研究數(shù)學(xué)的規(guī)律,提升數(shù)學(xué)思維能力.
一.學(xué)習(xí)目的和要求:1.對(duì)本章內(nèi)容的認(rèn)識(shí)更全面、更系統(tǒng)化。2.進(jìn)一步加深對(duì)本章基礎(chǔ)知識(shí)的理解以及基本技能的掌握,并能靈活運(yùn)用。二.學(xué)習(xí)重點(diǎn)和難點(diǎn):重點(diǎn):本章基礎(chǔ)知識(shí)的歸納、總結(jié);基礎(chǔ)知識(shí)的運(yùn)用;整式的加減運(yùn)算的靈活運(yùn)用。難點(diǎn):本章基礎(chǔ)知識(shí)的歸納、總結(jié);基礎(chǔ)知識(shí)的運(yùn)用;整式的加減運(yùn)算的靈活運(yùn)用與提高。三.學(xué)習(xí)方法:歸納,總結(jié) 交流、練習(xí) 探究 相結(jié)合 四.教學(xué)目標(biāo)和教學(xué)目標(biāo)解析:教學(xué)目標(biāo)1 同類項(xiàng) 同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也分別相等的項(xiàng),另外所有的常數(shù)項(xiàng)都是同類項(xiàng)。例如: 與 是同類項(xiàng); 與 是同類項(xiàng)。注意:同類項(xiàng)與系數(shù)大小無(wú)關(guān),與字母的排列順序無(wú)關(guān)。教學(xué)目標(biāo)2 合并同類項(xiàng)法則 合并同類項(xiàng)法則:把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)保持不變,如: 。
16.已知甲組有28人,乙組有20人,則下列調(diào)配方法中,能使一組人數(shù)為另一組人數(shù)的一半的是( ).A.從甲組調(diào)12人去乙組 B.從乙組調(diào)4人去甲組C.從乙組調(diào)12人去甲組 D.從甲組調(diào)12人去乙組,或從乙組調(diào)4人去甲組17.足球比賽的規(guī)則為勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)是0分,一個(gè)隊(duì)打了14場(chǎng)比賽,負(fù)了5場(chǎng),共得19分,那么這個(gè)隊(duì)勝了( )場(chǎng).A.3 B.4 C.5 D.618.如圖所示,在甲圖中的左盤(pán)上將2個(gè)物品取下一個(gè),則在乙圖中右盤(pán)上取下幾個(gè)砝碼才能使天平仍然平衡?( )A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)三、解答題.(19,20題每題6分,21,22題每題7分,23,24題每題10分,共46分)19.解方程:2(x-3)+3(2x-1)=5(x+3)20.解方程: 21.如圖所示,在一塊展示牌上整齊地貼著許多資料卡片,這些卡片的大小相同,卡片之間露出了三塊正方形的空白,在圖中用斜線標(biāo)明.已知卡片的短邊長(zhǎng)度為10厘米,想要配三張圖片來(lái)填補(bǔ)空白,需要配多大尺寸的圖片.
一、教學(xué)目標(biāo):1、會(huì)辨認(rèn)基本幾何體(直棱柱、圓柱、圓錐、球等)2、了解直棱柱、圓柱、圓錐的側(cè)面展開(kāi)圖,能根據(jù)展開(kāi)圖判斷和制作立體模型;3、能想象基本幾何體的截面形狀;4、會(huì)畫(huà)基本幾何體的三視圖,會(huì)判斷簡(jiǎn)單物體的三視圖,能根據(jù)三視圖描述幾何體或?qū)嵨镌停?、能從豐富的現(xiàn)實(shí)背景中抽象出空間幾何體和基本平面圖形,進(jìn)一步認(rèn)識(shí)點(diǎn)、線、面。6、獲得一些研究問(wèn)題的方法和經(jīng)驗(yàn),發(fā)展思維能力,加深理解相關(guān)的數(shù)學(xué)知識(shí)。7、體驗(yàn)數(shù)學(xué)知識(shí)之間的內(nèi)在聯(lián)系,初步形成對(duì)數(shù)學(xué)整體性的認(rèn)識(shí)。教學(xué)重點(diǎn):在具體的情境中,認(rèn)識(shí)一些基本的幾何體,并能描述這些幾何體的特征。教學(xué)難點(diǎn):是描述幾何體的特征,對(duì)幾何體進(jìn)行分類。二、設(shè)疑自探1、梳理本章知識(shí)(一)生活中有哪些你熟悉的圖形?舉例說(shuō)明.(二)你喜歡哪些幾何體?舉出一個(gè)生活中的物體,使它盡可能地包含不同的幾何體.(三)用自己的語(yǔ)言說(shuō)一說(shuō)棱柱的特征?(直棱柱)
1.會(huì)用度量法和疊合法比較兩個(gè)角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問(wèn)題.3.理解兩個(gè)角的和、差、倍、分的意義,會(huì)進(jìn)行角的運(yùn)算.一、情境導(dǎo)入同學(xué)們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開(kāi)的兩個(gè)角哪個(gè)大呢?二、合作探究探究點(diǎn)一:角的比較在某工廠生產(chǎn)流水線上生產(chǎn)如圖所示的工件,其中∠α稱為工件的中心角,生產(chǎn)要求∠α的標(biāo)準(zhǔn)角度為30°±1°,一名質(zhì)檢員在檢驗(yàn)時(shí),手拿一量角器逐一測(cè)量∠α的度數(shù).請(qǐng)你運(yùn)用所學(xué)的知識(shí)分析一下,該名質(zhì)檢員采用的是哪種比較方法?你還能給該質(zhì)檢員設(shè)計(jì)更好的質(zhì)檢方法嗎?請(qǐng)說(shuō)說(shuō)你的方法.解析:角的比較方法有測(cè)量法和疊合法,其中測(cè)量法更具體,疊合更直觀.在質(zhì)檢中,采用疊合法比較快捷.
求證:直角三角形的兩個(gè)銳角互余.解析:分析這個(gè)命題的條件和結(jié)論,根據(jù)已知條件和結(jié)論畫(huà)出圖形,寫(xiě)出已知、求證,并寫(xiě)出證明過(guò)程.已知:如圖所示,在△ABC中,∠C=90°.求證:∠A與∠B互余.證明:∵∠A+∠B+∠C=180°(三角形內(nèi)角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A與∠B互余.方法總結(jié):解此類題首先根據(jù)題意將文字語(yǔ)言變成符號(hào)語(yǔ)言,畫(huà)出圖形,最后再經(jīng)過(guò)分析論證,并寫(xiě)出證明的過(guò)程.三、板書(shū)設(shè)計(jì)命題分類公理:公認(rèn)的真命題定理:經(jīng)過(guò)證明的真命題證明:推理的過(guò)程經(jīng)歷實(shí)際情境,初步體會(huì)公理化思想和方法,了解本教材所采用的公理,讓學(xué)生對(duì)真假命題有一個(gè)清楚的認(rèn)識(shí),從而進(jìn)一步了解定理、公理的概念.培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力.
已知xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),求m和n的值.解析:根據(jù)同類項(xiàng)的概念,可列出含字母m和n的方程組,從而求出m和n.解:因?yàn)閤m-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當(dāng)m=4,n=3時(shí),xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng).方法總結(jié):解這類題,就是根據(jù)同類項(xiàng)的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書(shū)設(shè)計(jì)用加減法解二元一次方程組的步驟:①變形,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等;②加減消元;③解一元一次方程;④求另一個(gè)未知數(shù)的值,得方程組的解.進(jìn)一步理解二元一次方程組的“消元”思想,初步體會(huì)數(shù)學(xué)研究中“化未知為已知”的化歸思想.選擇恰當(dāng)?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學(xué)生的觀察、分析問(wèn)題的能力.
1.細(xì)講概念、強(qiáng)化訓(xùn)練要想讓學(xué)生正確、牢固地樹(shù)立起算術(shù)平方根的概念,需要由淺入深、不斷深化的過(guò)程.概念是由具體到抽象、由特殊到一般,經(jīng)過(guò)分析、綜合去掉非本質(zhì)特征,保持本質(zhì)屬性而形成的.概念的形成過(guò)程也是思維過(guò)程,加強(qiáng)概念形成過(guò)程的教學(xué),對(duì)提高學(xué)生的思維水平是很有必要的.概念教學(xué)過(guò)程中要做到:講清概念,加強(qiáng)訓(xùn)練,逐步深化.“講清概念”就是通過(guò)具體實(shí)例揭露算術(shù)平方根的本質(zhì)特征.算術(shù)平方根的本質(zhì)特征就是定義中指出的:“如果一個(gè)正數(shù) 的平方等于 ,即 ,那么這個(gè)正數(shù) 就叫做 的算術(shù)平方根,”的“正數(shù) ”,即被開(kāi)方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術(shù)平方根也必須是正的.當(dāng)然零的算術(shù)平方根是零.
解析:要在地球儀上確定南昌市的位置,需要知道它的經(jīng)緯度,故選D.方法總結(jié):本題考查了坐標(biāo)確定位置,熟記位置的確定需要橫向與縱向的兩個(gè)數(shù)據(jù)是解題的關(guān)鍵.【類型二】 用“區(qū)域定位法”確定位置如圖所示是某市區(qū)的部分簡(jiǎn)圖,文化宮在D2區(qū),體育場(chǎng)在C4區(qū),據(jù)此說(shuō)明醫(yī)院在________區(qū),陽(yáng)光中學(xué)在________區(qū).解析:本題首先給出的是表示文化宮和體育場(chǎng)的位置,即D2區(qū)和C4區(qū),這就確定了本題中表示建筑物位置的方法,即字母表示列數(shù),數(shù)字表示行數(shù).故填A(yù)3,D5.方法總結(jié):解此類題先要弄清區(qū)域定位法中字母及數(shù)字各自表示的含義,再用已知的表示方法來(lái)確定相關(guān)位置.三、板書(shū)設(shè)計(jì)確定位置有序?qū)崝?shù)對(duì)方位法經(jīng)緯度區(qū)域定位法將現(xiàn)實(shí)生活中常用的定位方法呈現(xiàn)給學(xué)生,進(jìn)一步豐富學(xué)生的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),培養(yǎng)學(xué)生觀察、分析、歸納、概括的能力.教學(xué)過(guò)程中創(chuàng)設(shè)生動(dòng)活潑、直觀形象、且貼近他們生活的問(wèn)題情境;另一方面,為學(xué)生創(chuàng)造自主學(xué)習(xí)、合作交流的機(jī)會(huì),促使他們主動(dòng)參與、積極探究.
第一環(huán)節(jié)感受生活中的情境,導(dǎo)入新課通過(guò)若干圖片,引導(dǎo)學(xué)生感受生活中常常需要確定位置.導(dǎo)入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數(shù)軸上,確定一個(gè)點(diǎn)的位置需要幾個(gè)數(shù)據(jù)呢? 答:一個(gè),例如,若A點(diǎn)表示-2,B點(diǎn)表示3,則由-2和3就可以在數(shù)軸上找到A點(diǎn)和B點(diǎn)的位置??偨Y(jié)得出結(jié)論:在直線上, 確定一個(gè)點(diǎn)的位置一般需要一個(gè)數(shù)據(jù).(2)啟新:在平面內(nèi),又如何確定一個(gè)點(diǎn)的位置呢?請(qǐng)同學(xué)們根據(jù)生活中確定位置的實(shí)例,請(qǐng)談?wù)勛约旱目捶?2.舉例探究Ⅰ. 探究1(1)在電影院內(nèi)如何找到電影票上指定的位置?(2)在電影票上“6排3號(hào)”與“3排6號(hào)”中的“6”的含義有什么不同?(3)如果將“6排3號(hào)”簡(jiǎn)記作(6,3),那么“3排6號(hào)”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內(nèi),確定一個(gè)座位一般需要幾個(gè)數(shù)據(jù)?結(jié)論:生活中常常用“排數(shù)”和“號(hào)數(shù)”來(lái)確定位置. Ⅱ. 學(xué)有所用(1) 你能用兩個(gè)數(shù)據(jù)表示你現(xiàn)在所坐的位置嗎?
活動(dòng)6:通過(guò)隨堂小測(cè)的方式辨別圓的相關(guān)概念。目的:讓學(xué)生準(zhǔn)確地掌握直徑與弦,弧與半圓的關(guān)系,以及準(zhǔn)確理解等圓和等弧的概念?;顒?dòng)7:讓學(xué)生分組討論“投圈游戲”,解決生活中的實(shí)際問(wèn)題。目的:提高學(xué)生運(yùn)用所學(xué)圓的知識(shí),解決實(shí)際問(wèn)題的能力;也是為了鞏固圓的定義,同時(shí)再次激發(fā)學(xué)生的學(xué)習(xí)興趣?;顒?dòng)8:給學(xué)生一個(gè)草坪情境,要求作出半徑為5m的圓,并說(shuō)明原理。目的:提高學(xué)生的綜合運(yùn)用能力,并鞏固圓的定義?;顒?dòng)9:讓學(xué)生根據(jù)樹(shù)木的年輪的直徑和生長(zhǎng)年齡,計(jì)算樹(shù)木每年的生長(zhǎng)情況。目的:鞏固圓的知識(shí)?;顒?dòng)10:讓學(xué)生回顧本節(jié)課的重要內(nèi)容并布置課后作業(yè)。目的:前者的目的是梳理圓及圓的相關(guān)元素的概念,便于識(shí)記、理解和運(yùn)用。后者的目的是:第一題,檢測(cè)學(xué)生的動(dòng)手能力和提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;第二題,檢測(cè)學(xué)生對(duì)本節(jié)課的重要內(nèi)容的理解情況;第三題,檢測(cè)學(xué)生的綜合運(yùn)用能力。以上是我對(duì)本節(jié)課內(nèi)容的理解和設(shè)計(jì)。
第一道例題提示學(xué)生把地基看成一個(gè)幾何圖形,即正六邊形,逐步引導(dǎo)學(xué)生完成例題的解答。例題1:有一個(gè)亭子它的地基是半徑為4米的正六邊形,求地基的周長(zhǎng)和面積(精確到0.1平方米)。第二道例題,我讓學(xué)生獨(dú)立完成,我在下面巡視,個(gè)別輔導(dǎo),同時(shí)我將關(guān)注不同層次學(xué)生對(duì)本節(jié)知識(shí)的理解、掌握程度,及時(shí)調(diào)整教學(xué)。最后,引導(dǎo)學(xué)生總結(jié)這一類問(wèn)題的求解方法。這兩道例題旨在將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,將多邊形化歸成三角形來(lái)解決,體現(xiàn)了化歸思想的應(yīng)用。(七)、課堂小結(jié)(1)學(xué)完這節(jié)課你有哪些收獲?(八)布置作業(yè):我針對(duì)學(xué)生素質(zhì)的差異設(shè)計(jì)了有層次的訓(xùn)練題,留給學(xué)生課后自主探究,這樣即使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有佘力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的。
解析:此題作為一道開(kāi)放型題,分類的方法非常多,只要能說(shuō)明分類的理由即可.但要注意:按某一標(biāo)準(zhǔn)分類時(shí),要做到不重不漏,分類標(biāo)準(zhǔn)不同時(shí),分類的結(jié)果也就不盡相同.解:本題答案不唯一,如按柱體、錐體、球體分類:(2)(3)(5)和(6)都是柱體,(4)(7)是錐體,(1)是球體.方法總結(jié):生活中常見(jiàn)幾何體有兩種分類:一種按柱體、錐體、球體分類;一種按平面和曲面分類.探究點(diǎn)二:幾何體的形成筆尖畫(huà)線可以理解為點(diǎn)動(dòng)成線.使用數(shù)學(xué)知識(shí)解釋下列生活中的現(xiàn)象:(1)流星劃破夜空,留下美麗的弧線;(2)一條拉直的細(xì)線切開(kāi)了一塊豆腐;(3)把一枚硬幣立在桌面上用力一轉(zhuǎn),形成一個(gè)球.解析:解釋現(xiàn)象關(guān)鍵是看其屬于什么運(yùn)動(dòng).解:(1)點(diǎn)動(dòng)成線;(2)線動(dòng)成面;(3)面動(dòng)成體.方法總結(jié):生活中的很多現(xiàn)象都可以用數(shù)學(xué)知識(shí)來(lái)解釋,關(guān)鍵是要找到生活實(shí)例與數(shù)學(xué)知識(shí)的連接點(diǎn),如第(1)題可將流星看作一個(gè)點(diǎn),則“點(diǎn)動(dòng)成線”.如圖所示,將平面圖形繞軸旋轉(zhuǎn)一周,得到的幾何體是()
四、做一做(實(shí)踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學(xué)做得比較標(biāo)準(zhǔn)。2、使出事先準(zhǔn)備好的等邊三角形紙片,試將它折成一個(gè)正四面體。五、試一試(探索)課前,發(fā)給學(xué)生閱讀材料《晶體--自然界的多面體》,讓學(xué)生通過(guò)閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨(dú)立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵(lì)學(xué)生探索的欲望。教師出示實(shí)物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說(shuō)出它的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。2、再讓學(xué)生觀察、討論其它正多面體的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書(shū)上的P128的表格。引導(dǎo)學(xué)生發(fā)現(xiàn)結(jié)論。3、(延伸):若隨意做一個(gè)多面體,看看是否還是那個(gè)結(jié)果。