問題2、如何用測角儀測量一個(gè)低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時(shí),轉(zhuǎn)動(dòng)度盤,使度盤的直徑對準(zhǔn)低處的目標(biāo),記下此時(shí)鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動(dòng)三:測量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無障礙地直接測得測點(diǎn)與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測點(diǎn)A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點(diǎn)A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時(shí),它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因?yàn)镹E=AC=a,所以MN=ME+EN=l·tanα+a.
證明:過點(diǎn)A作AF∥DE,交BC于點(diǎn)F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時(shí),先必須已知一個(gè)條件,這個(gè)條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時(shí),一般要用到其中的兩條線互相重合.三、板書設(shè)計(jì)1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個(gè)條件,就能得出另外的兩個(gè)結(jié)論.本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
方法總結(jié):絕對值的化簡首先要判斷絕對值符號(hào)里面的式子的正負(fù),然后根據(jù)絕對值的性質(zhì)將絕對值的符號(hào)去掉,最后進(jìn)行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號(hào)里面式子的正負(fù),然后進(jìn)行化簡.三、板書設(shè)計(jì)1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學(xué)生經(jīng)歷一個(gè)探究解決問題的過程,抓住“任意的三條線段能不能圍成一個(gè)三角形”引發(fā)學(xué)生探究的欲望,圍繞這個(gè)問題讓學(xué)生自己動(dòng)手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既增加了學(xué)習(xí)興趣,又增強(qiáng)了學(xué)生的動(dòng)手能力
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設(shè)AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設(shè)計(jì)1.邊角邊:兩邊及其夾角分別相等的兩個(gè)三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應(yīng)相等的兩個(gè)三角形不一定全等.2.全等三角形判定與性質(zhì)的綜合運(yùn)用本節(jié)課從操作探究入手,具有較強(qiáng)的操作性和直觀性,有利于學(xué)生從直觀上積累感性認(rèn)識(shí),從而有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對新知識(shí)的理解和掌握.從課堂教學(xué)的情況來看,學(xué)生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時(shí)不會(huì)正確分類,需要在今后的教學(xué)和作業(yè)中進(jìn)一步加強(qiáng)分類思想的鞏固和訓(xùn)練
方法總結(jié):本題結(jié)合三角形內(nèi)角和定理考查反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.在假設(shè)結(jié)論不成立時(shí)要注意考慮結(jié)論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設(shè)計(jì)1.等腰三角形的判定定理:有兩個(gè)角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.解決幾何證明題時(shí),應(yīng)結(jié)合圖形,聯(lián)想我們已學(xué)過的定義、公理、定理等知識(shí),尋找結(jié)論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時(shí)學(xué)會(huì)分析,可以采用執(zhí)果索因(從結(jié)論出發(fā),探尋結(jié)論成立所需的條件)的方法.
方法總結(jié):在等腰三角形有關(guān)計(jì)算或證明中,會(huì)遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設(shè)計(jì)1.等腰三角形的性質(zhì):等腰三角形是軸對稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸;等腰三角形的兩個(gè)底角相等.2.運(yùn)用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉(zhuǎn)化為三角形后木架的形狀就不變了.根據(jù)具體多邊形轉(zhuǎn)化為三角形的經(jīng)驗(yàn)及題中所加木條可找到一般規(guī)律.解:過n邊形的一個(gè)頂點(diǎn)可以作(n-3)條對角線,把多邊形分成(n-2)個(gè)三角形,所以,要使一個(gè)n邊形木架不變形,至少需要(n-3)根木條固定.方法總結(jié):將多邊形轉(zhuǎn)化為三角形時(shí),所需要的木條根數(shù),可從具體到一般去發(fā)現(xiàn)規(guī)律,然后驗(yàn)證求解.三、板書設(shè)計(jì)1.邊邊邊:三邊對應(yīng)相等的兩個(gè)三角形全等,簡寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動(dòng)入手,有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對新知識(shí)的理解和掌握.從課堂教學(xué)的情況來看,學(xué)生對“邊邊邊”掌握較好,達(dá)到了教學(xué)的預(yù)期目的.存在的問題是少數(shù)學(xué)生在輔助線的構(gòu)造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學(xué)中進(jìn)一步加強(qiáng)鞏固和訓(xùn)練
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內(nèi)角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結(jié):本題主要利用了“直角三角形兩銳角互余”的性質(zhì)和三角形的內(nèi)角和定理,熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.三、板書設(shè)計(jì)1.三角形的內(nèi)角和定理:三角形的內(nèi)角和等于180°.2.三角形內(nèi)角和定理的證明3.直角三角形的性質(zhì):直角三角形兩銳角互余.本節(jié)課通過一段對話設(shè)置疑問,巧設(shè)懸念,激發(fā)起學(xué)生獲取知識(shí)的求知欲,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,使學(xué)生由被動(dòng)接受知識(shí)轉(zhuǎn)為主動(dòng)學(xué)習(xí),從而提高學(xué)習(xí)效率.然后讓學(xué)生自主探究,在教學(xué)過程中充分發(fā)揮學(xué)生的主動(dòng)性,讓學(xué)生提出猜想.在教學(xué)中,教師通過必要的提示指明學(xué)生思考問題的方向,在學(xué)生提出驗(yàn)證三角形內(nèi)角和的不同方法時(shí),教師注意讓學(xué)生上臺(tái)演示自己的操作過程和說明自己的想法,這樣有助于學(xué)生接受三角形的內(nèi)角和是180°這一結(jié)論
解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.
方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.
首先請學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個(gè)直角三角形和一個(gè)矩形來解.教師可請一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個(gè)別學(xué)生解開疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評價(jià)黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計(jì)算中盡量選擇較簡便、直接的關(guān)系式加以計(jì)算.三、課堂小結(jié):請學(xué)生總結(jié):解直角三角形時(shí),運(yùn)用直角三角形有關(guān)知識(shí),通過數(shù)值計(jì)算,去求出圖形中的某些邊的長度或角的大?。诜治鰡栴}時(shí),最好畫出幾何圖形,按照圖中的邊角之間的關(guān)系進(jìn)行計(jì)算.這樣可以幫助思考、防止出錯(cuò).四、布置作業(yè)
1.理解并掌握三角形全等的判定方法——“角邊角”“角角邊”;(重點(diǎn))2.能運(yùn)用“角邊角”“角角邊”判定方法解決有關(guān)問題.(難點(diǎn)) 一、情境導(dǎo)入如圖所示,某同學(xué)把一塊三角形的玻璃不小心打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是帶哪塊去?學(xué)生活動(dòng):學(xué)生先自主探究出答案,然后再與同學(xué)進(jìn)行交流.教師點(diǎn)撥:顯然僅僅帶①或②是無法配成完全一樣的玻璃的,而僅僅帶③則可以,為什么呢?本節(jié)課我們繼續(xù)研究三角形全等的判定方法.二、合作探究探究點(diǎn)一:全等三角形判定定理“ASA”如圖,AD∥BC,BE∥DF,AE=CF,試說明:△ADF≌△CBE.解析:根據(jù)平行線的性質(zhì)可得∠A=∠C,∠DFE=∠BEC,再根據(jù)等式的性質(zhì)可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.
[設(shè)計(jì)說明]:只給出情景故事,感知了一個(gè)大數(shù),這樣還不能引起學(xué)生對大數(shù)的深刻認(rèn)識(shí),所以再給出宇宙星空中的這些大數(shù),讓學(xué)生讀讀、看看這些數(shù),引起學(xué)生強(qiáng)烈的認(rèn)知上的沖突,形成一種心理上的想讀、想寫的求知欲望。(二)、引出問題、探索新知在上面的例子中,我們遇到了幾個(gè)很大的數(shù),看起來、讀起來、寫起來都不方便,有沒有簡單的表示法呢?分以下步驟完成。1、回憶100 ,1000,10000,能寫成10( )2、300=3×100=3×10( )3000=3×1000=3×10()30000=3×10000=3×10()3、再由學(xué)生完成上面4個(gè)例子中的數(shù)的表示。(學(xué)生對160 000 000 000這個(gè)數(shù)可能表示為、16×1010,教師要利用學(xué)生這種錯(cuò)誤,強(qiáng)調(diào)a的范圍)4、教師給出科學(xué)記數(shù)法表示:a×10( )(1≤a<10)。[設(shè)計(jì)說明]:通過層層遞進(jìn)的探究設(shè)計(jì),啟發(fā)學(xué)生成功地發(fā)現(xiàn)“科學(xué)記數(shù)法”的表示方法,同時(shí)又通過學(xué)生示錯(cuò),讓學(xué)生記住a的范圍,體現(xiàn)了以學(xué)生為主的探究式教學(xué)。
一、教材分析(一)、內(nèi)容、地位和作用這節(jié)課是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書北師大版七年級(jí)第6章《數(shù)據(jù)的收集與表示》第一節(jié)《數(shù)據(jù)的收集》的第一課時(shí)。在此之前,學(xué)生在已經(jīng)學(xué)習(xí)了一些初步的數(shù)據(jù)的處理問題,對運(yùn)用數(shù)據(jù)去解決日常生活中的實(shí)際問題已有所了解,知道了運(yùn)用數(shù)據(jù)的價(jià)值。本節(jié)課是在此基礎(chǔ)上對數(shù)據(jù)的收集又有了更進(jìn)一步的學(xué)習(xí)與挖掘。為后面運(yùn)用數(shù)據(jù)的知識(shí)去分析一些現(xiàn)象打下基礎(chǔ)。新的義務(wù)教育課程標(biāo)準(zhǔn)與我國以往的數(shù)學(xué)課程相比,在教學(xué)內(nèi)容上大大加強(qiáng)了統(tǒng)計(jì)和概率,在教學(xué)方法上積極倡導(dǎo)自主探索和合作學(xué)習(xí),幫助學(xué)生通過反復(fù)觀察,了解不確定的現(xiàn)象也能夠表現(xiàn)出規(guī)律,整個(gè)內(nèi)容圍繞真實(shí)的數(shù)據(jù)展開教學(xué)。依據(jù)新課程標(biāo)準(zhǔn),在教學(xué)中,應(yīng)注重所學(xué)內(nèi)容與日常生活、自然、社會(huì)和科學(xué)技術(shù)領(lǐng)域的聯(lián)系,使學(xué)生體會(huì)統(tǒng)計(jì)與概率對制定決策的重要作用。
(1) 這28天中屬于“重度染污”、“中度污染”、“輕度污染”、“良”和“優(yōu)”的天數(shù)各有幾天?出現(xiàn)的頻率各是多少?請用一張統(tǒng)計(jì)表來表示;(3) 從你作的統(tǒng)計(jì)圖表中,你得到哪些結(jié)論?說說你的理由.(三)課堂小結(jié):本節(jié)課學(xué)習(xí)了用統(tǒng)計(jì)來直觀來表示數(shù)據(jù),并從統(tǒng)計(jì)圖中發(fā)現(xiàn)數(shù)據(jù)間的聯(lián)系。整理數(shù)據(jù)——制統(tǒng)計(jì)表1、從資料給出的許多數(shù)據(jù)中選取相關(guān)數(shù)據(jù)進(jìn)行整理;2、標(biāo)目分成橫、縱兩種(允許不同分法);3、把數(shù)據(jù)放入相應(yīng)位置。為了更清晰地用統(tǒng)計(jì)表展示與描繪數(shù)據(jù),統(tǒng)計(jì)表必須有規(guī)范的結(jié)構(gòu):標(biāo)題(統(tǒng)計(jì)表的名稱)標(biāo)目(如“國家”、“屆數(shù)”…)數(shù)據(jù)、必要的說明(數(shù)據(jù)的單位、制表日期等)折線統(tǒng)計(jì)圖的步驟:(1)寫出統(tǒng)計(jì)圖名稱;(2)畫出橫、縱兩條互相垂直的數(shù)軸(有時(shí)不畫箭頭),分別表示兩個(gè)標(biāo)目的數(shù)據(jù);(3)根據(jù)橫、縱各個(gè)方向上的各對對應(yīng)的標(biāo)目數(shù)據(jù)畫點(diǎn);(4)用線段把每相鄰兩點(diǎn)連接起來。
(五)、反饋矯正,注重參與: 為鞏固本節(jié)的教學(xué)重點(diǎn)讓學(xué)生獨(dú)立完成: 1、課本23頁練習(xí)1、2 2、課本23頁3題的(給全體學(xué)生以示范性讓一個(gè)同學(xué)板書) 為向?qū)W生進(jìn)一步滲透數(shù)形結(jié)合的思想讓學(xué)生討論: 3、數(shù)軸上的點(diǎn)P與表示有理數(shù)3的點(diǎn)A距離是2, (1)試確定點(diǎn)P表示的有理數(shù); (2)將A向右移動(dòng)2個(gè)單位到B點(diǎn),點(diǎn)B表示的有理數(shù)是多少? (3)再由B點(diǎn)向左移動(dòng)9個(gè)單位到C點(diǎn),則C點(diǎn)表示的有理數(shù)是多少? 先讓學(xué)生通過小組討論得出結(jié)果,通過以上練習(xí)使學(xué)生在掌握知識(shí)的基礎(chǔ)上達(dá)到靈活運(yùn)用,形成一定的能力。 (六)、歸納小結(jié),強(qiáng)化思想: 根據(jù)學(xué)生的特點(diǎn),師生共同小結(jié): 1、為了鞏固本節(jié)課的教學(xué)重點(diǎn)提問:你知道什么是數(shù)軸嗎?你會(huì)畫數(shù)軸嗎?這節(jié)課你學(xué)會(huì)了用什么來表示有理數(shù)? 2、數(shù)軸上,會(huì)不會(huì)有兩個(gè)點(diǎn)表示同一個(gè)有理數(shù)?會(huì)不會(huì)有一個(gè)點(diǎn)表示兩個(gè)不同的有理數(shù)? 讓學(xué)生牢固掌握一個(gè)有理數(shù)只對應(yīng)數(shù)軸上的一個(gè)點(diǎn),并能說出數(shù)軸上已知點(diǎn)所表示的有理數(shù)。
五、課堂設(shè)計(jì)理念本節(jié)課著力體現(xiàn)以下幾個(gè)方面:1、突出問題的應(yīng)用意識(shí)。在各個(gè)環(huán)節(jié)的安排上都設(shè)計(jì)成一個(gè)個(gè)問題,使學(xué)生能圍繞問題展開討思考、討論,進(jìn)行學(xué)習(xí)。2、體現(xiàn)學(xué)生的主體意識(shí)。讓學(xué)生通過列算式與列方程的比較,分別歸納出它們的特點(diǎn),從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過合作交流,得出問題的不同解法;讓學(xué)生對一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點(diǎn)等進(jìn)行歸納。3、體現(xiàn)學(xué)生思維的層次性。教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決問題,然后再引導(dǎo)學(xué)生列出含未知數(shù)的式了,尋找相等關(guān)系列出方程,在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中都注意了學(xué)生思維的層次性。4、滲透建模思想。把實(shí)際問題中的數(shù)量關(guān)系用方程形式表示出來,就是建立一種數(shù)學(xué)模型,教師有意識(shí)地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實(shí)際問題抽象出方程模型的能力。
最后我引導(dǎo)學(xué)生觀察自己手中的量角器引導(dǎo)學(xué)生在測量的時(shí)候有時(shí)用度的單位還不夠就必須用到比度還小的單位分和秒,進(jìn)而明白度分秒之間的轉(zhuǎn)換關(guān)系,并且引導(dǎo)學(xué)生對比和度分秒進(jìn)制一樣的還有時(shí)間。從而進(jìn)入到例題2的講解。接下來讓學(xué)生通過隨堂練習(xí)來加強(qiáng)和鞏固本節(jié)課的內(nèi)容。提高學(xué)生對本節(jié)課知識(shí)的系統(tǒng)綜合。(四)歸納總結(jié)。小結(jié)主要由學(xué)生完成,我作出適當(dāng)?shù)难a(bǔ)充。最后總結(jié)角的比較表方法及估測和某些角之間的等量關(guān)系的書寫基本的幾何語句并能根據(jù)語句畫出幾何圖形。(五)布置作業(yè)通過作業(yè)及時(shí)了解學(xué)生學(xué)習(xí)效果,調(diào)整教學(xué)安排。使學(xué)生通過獨(dú)立思考,自我評價(jià)學(xué)習(xí)效果;學(xué)會(huì)反思,發(fā)現(xiàn)問題;并試著通過閱讀教材、查找資料或與同伴交流解決問題。
通過有針對性的練習(xí),鞏固所學(xué),拓展知識(shí),形成應(yīng)用能力。本環(huán)節(jié)主要是針對學(xué)生對本節(jié)內(nèi)容的掌握程度進(jìn)行檢測反饋。學(xué)生在經(jīng)過自學(xué)、置疑、解疑、教師點(diǎn)撥后作一套本節(jié)的檢測題。做完后,教師或?qū)W生給出答案,并給予簡單解析。教師對檢測成績做以簡單的統(tǒng)計(jì),了解本節(jié)課的學(xué)習(xí)效果。檢測題必須精心設(shè)計(jì)與安排,因?yàn)閷W(xué)生在做經(jīng)過精心安排的檢測題時(shí),不僅在積極地掌握數(shù)學(xué)知識(shí),而且能獲得進(jìn)行創(chuàng)造性思維的能力。要充分發(fā)揮檢測題的功能,設(shè)計(jì)檢測題時(shí)應(yīng)由淺入深、難易適當(dāng)、逐步提高、突出重點(diǎn)與關(guān)鍵、注意題型的搭配。在試題設(shè)計(jì)上,應(yīng)將知識(shí)、素質(zhì)、能力的考查統(tǒng)一起來,既有知識(shí)性、分析性題目,又有應(yīng)用性、直覺形象性題目。提高創(chuàng)新性題型的比重和難度,少問“是什么”,多問“為什么”、“對某些問題,你以為如何”等,增強(qiáng)答案的發(fā)散性。
按此規(guī)律,第n個(gè)式子是 。師生活動(dòng):學(xué)生通過觀察,分析,歸納發(fā)現(xiàn)規(guī)律,并用含字母的式子表示一般結(jié)論。設(shè)計(jì)意圖:進(jìn)一步理解字母表示數(shù)的意義,理解用含有字母的數(shù)學(xué)式子表示實(shí)際問題中的數(shù)量關(guān)系的簡潔性、必要性和一般性。(四)鞏固提升問題:你能給以上這些式子賦予新的含義嗎?師生活動(dòng):教師舉例說明比如:如果p表示我們班的人數(shù),我們班80%的同學(xué)喜歡上數(shù)學(xué)課,那么0.8p 就可以表示我們班喜歡數(shù)學(xué)課的人數(shù)。學(xué)生思考、交流后發(fā)言五、練習(xí)檢測(1)5箱蘋果重m kg,每箱重 kg ;(2)一個(gè)數(shù)比a的 倍小5,則這個(gè)數(shù)為 ;(3)全校學(xué)生總數(shù)是x,其中女生占總數(shù)52%,則女生人數(shù)是 ,男生人數(shù)是 ;(4)某校前年購買計(jì)算機(jī) x 臺(tái),去年購買數(shù)量是前年的2倍,今年購買數(shù)量又是去年的2倍,則學(xué)校三年共購買計(jì)算機(jī) 臺(tái);(5)某班有a名學(xué)生,現(xiàn)把一批圖書分給全班學(xué)生閱讀,如果每人分4本,還缺25本,則這批圖書共 本;(6)一個(gè)兩位數(shù),十位上的數(shù)字為a,個(gè)位上的數(shù)字b,則這個(gè)兩位數(shù)為 .師生活動(dòng):學(xué)生板演,師生共同評價(jià)總結(jié)注意(5)帶分?jǐn)?shù)化假分?jǐn)?shù)設(shè)計(jì)意圖:進(jìn)一步提高用含有字母的式子表示實(shí)際問題中的數(shù)量關(guān)系的能力。