這樣充分尊重學(xué)生的獨立思考的過程與結(jié)果,鼓勵學(xué)生想出多種方法計算,在學(xué)生匯報交流、反饋、評價中初步感受到轉(zhuǎn)化的數(shù)學(xué)思想,獲得成功的學(xué)習(xí)體驗,之后教師評價:大家能把新的問題轉(zhuǎn)化成已有的經(jīng)驗來解決,這種分析思考的方法很好,你們還能提出類似的問題嗎?進而引入進一步的探索當(dāng)中,教師作出這樣的提示,這道題沒有元角分,你們能把它也轉(zhuǎn)化成已經(jīng)學(xué)過的乘法算式嗎?在學(xué)生獨立思考計算的基礎(chǔ)上,組織小組討論,給每個學(xué)生展示自己思維的機會,教師深入小組收集信息,然后組織全班討論,揭示算理,得出計算的方法。這一過程要重點突出算理的探索,使學(xué)生認識到小數(shù)乘法與整數(shù)乘法的聯(lián)系,利用積變化的規(guī)律合理解釋算理,通過學(xué)生親身經(jīng)歷,主動參與,積極思考,自學(xué)交流等活動過程,使學(xué)生真正獲得數(shù)學(xué)的知識和學(xué)習(xí)方法。
二、探究交流,引導(dǎo)概括 —— 方程為了培養(yǎng)學(xué)生的發(fā)現(xiàn)和抽象概括能力,同時進一步理解方程的意義,我讓學(xué)生分組學(xué)習(xí),引導(dǎo)他們先找出②20+χ=100,⑥ 3χ=180,⑧100+2χ=3×50像上面三臄?shù)仁降挠泄餐卣?,然后歸納概括什么叫做方程?最后得出:像這樣的含有未知數(shù)的等式,叫做方程。三、討論比較,辨析、概念 —— 等式與方程的關(guān)系為了體現(xiàn)學(xué)生的主體性,培養(yǎng)學(xué)生的合作意識,同時讓學(xué)生在解決問題的過程中得到創(chuàng)造的樂趣。通過四人合作用自己的方法創(chuàng)作 “ 方程 ” 與 “ 等式 ” 的關(guān)系圖,并用自己的話說一說 “ 等式 ” 與 “ 方程 ” 的關(guān)系:方程一定是等式,但等式不一定是方程。四、鞏固深化,拓展思維 —— 練習(xí)1 、“做一做”:2、判斷是否方程3、“方程一定是等式,等式也一定是方程”這句話對嗎?4、叫學(xué)生用圖來表示等式和方程的關(guān)系。
在學(xué)習(xí)本課內(nèi)容以前,學(xué)生已經(jīng)系統(tǒng)地學(xué)習(xí)了整數(shù)四則混合運算和小數(shù)四則計算,為本節(jié)課內(nèi)容的學(xué)習(xí)打下了基礎(chǔ),由于小數(shù)四則混合運算的運算順序同整數(shù)四則混合運算的運算順序完全一樣,針對這一點,本課教學(xué)確定的教學(xué)目的是使學(xué)生熟記小數(shù)四則混合運算順序,提高計算能力。使學(xué)生熟練地掌握小數(shù)四則混合運算的運算順序,正確、迅速地進行小數(shù)四則混合式題的運算,是本課的教學(xué)重點。教學(xué)難點是:1.能否正確把握運算順序。2.能否正確標明根據(jù)以上教學(xué)目的,為了更好地突出重點,突破難點,在教學(xué)中遵循大綱的要求,從簡單入手。例1是最簡單的兩步計算題,讓學(xué)生熟悉一下運算順序。再過渡到較復(fù)雜的問題。例2是三步計算帶小括號的較復(fù)雜的四則混算題,在運算過程中出現(xiàn)了除不盡的情況,應(yīng)說明計算過程中,當(dāng)除得的商超過兩位小數(shù)時,一般只需保留兩位小數(shù),再進行計算。最后進入到教學(xué)重點、難點階段。
教學(xué)目標:1、學(xué)生經(jīng)歷體驗由具體數(shù)到用字母表示數(shù)的抽象過程;2、學(xué)生能用含有字母的式子表示計算公式;教學(xué)重、難點:目標1教學(xué)過程:一、引入。1、師:同學(xué)們,我們開始上課,先做一個游戲:首先,我說a表示舉左手一次,我說b表示舉右手一次,我說c表示拍手一次。聽好了沒有,現(xiàn)在老師說,你們做,好不好?師:abc,acb,bac,bca,cab,cba。師:剛才我們用字母表示一個信息,其實,在日常生活中,字母可以表示很多東西,今天,我們就一起來研究“用字母表示數(shù)”。(板書課題)2、復(fù)習(xí)數(shù)量關(guān)系式:(學(xué)生讀一次)每份數(shù)×份數(shù)=總數(shù) 單價×數(shù)量=總價 速度×時間=路程總數(shù)÷份數(shù)=每份數(shù) 總價÷數(shù)量=單價 路程÷速度=時間總數(shù)÷每份數(shù)=份數(shù) 總價÷單價=數(shù)量 路程÷時間=速度評析:以學(xué)生感興趣的游戲入手,激發(fā)學(xué)生的學(xué)習(xí)興趣,同時復(fù)習(xí)數(shù)量關(guān)系式,為學(xué)習(xí)新知識奠定基礎(chǔ)。
(三)實踐操作,表現(xiàn)歌曲。課標中指出,“表現(xiàn)是實踐性很強的音樂學(xué)習(xí)領(lǐng)域,是學(xué)習(xí)音樂的基礎(chǔ)性內(nèi)容,是培養(yǎng)學(xué)生音樂表現(xiàn)能力和審美能力的重要途徑?!痹偌由蠈τ谶@個年齡段的學(xué)生來講,他們特別喜歡表現(xiàn)自己,所以,我充分發(fā)揮集體的力量,設(shè)計“小小音樂家”的教學(xué)環(huán)節(jié),讓同學(xué)們在小組中合作學(xué)習(xí),采用不同形式演唱、用打擊樂器伴奏、歌舞表演等形式將唱、奏結(jié)合,唱、演結(jié)合,鞏固學(xué)生對歌曲的學(xué)習(xí),體驗合作學(xué)習(xí)的快樂,養(yǎng)成學(xué)生共同參與的群體意識和相互尊重的合作精神和實踐能力,這也更體現(xiàn)了課標中音樂課程價值所提出的要培養(yǎng)學(xué)生的“社會交往價值”。(四)拓展延伸,創(chuàng)編歌曲。課標中的“文化傳承價值”中明確提出:“要讓孩子們通過學(xué)習(xí)世界上其他國家和民族的的音樂文化,拓寬他們的審美視野,認識世界各民族音樂文化的豐富性和多樣性,增進對不同文化的理解、尊重和熱愛?!?/p>
②.通過“由文字語言到符號語言”再“由符號語言到文字語言”讓學(xué)生從正反兩方面雙向建構(gòu).突破難點策略:①.分三步分散難點:引入時大量的實際情景,讓學(xué)生體會到代數(shù)式存在的普遍性;讓學(xué)生給自己構(gòu)造的一些簡單代數(shù)式賦予實際意義,進一步體會代數(shù)式的模型思想;通過“主題研究”等環(huán)節(jié)進一步提高解決實際問題的能力.②.適時安排小組合作與交流,使學(xué)生在傾聽、質(zhì)疑、說服、推廣的過程中得到“同化”和“順應(yīng)”,直至豁然開朗,突破思維的瓶頸.2.生成預(yù)設(shè)為生成服務(wù),本案編代數(shù)式、主題研究等環(huán)節(jié)的設(shè)計為學(xué)生精彩的生成提供了很好的平臺,在實際教學(xué)過程中,教師要注重生成信息的捕捉,善于發(fā)現(xiàn)學(xué)生思維的亮點,及時進行引導(dǎo)和激勵,并根據(jù)具體教學(xué)對象,適當(dāng)調(diào)整教與學(xué),使教學(xué)過程真正成為生成教育智慧和增強實踐能力的過程.讓預(yù)設(shè)與生成齊飛.
教學(xué)反思: 1.本課時設(shè)計的主導(dǎo)思想是:將數(shù)形結(jié)合的思想滲透給學(xué)生,使學(xué)生對數(shù)與形有一個初步的認識.為將來的學(xué)習(xí)打下基礎(chǔ),這節(jié)課是一堂起始課,它為學(xué)生的思維開拓了一個新的天地.在傳統(tǒng)的教學(xué)安排中,這節(jié)課的地位沒有提到一定的高度,只是交給學(xué)生比較線段的方法,沒有從數(shù)形結(jié)合的高度去認識.實際上這節(jié)課大有可講,可以挖掘出較深的內(nèi)容.在教知識的同時,交給學(xué)生一種很重要的數(shù)學(xué)思想.這一點不容忽視,在日常的教學(xué)中要時時注意.2.學(xué)生在小學(xué)時只會用圓規(guī)畫圓,不會用圓規(guī)去度量線段的大小以及截取線段,通過這節(jié)課,學(xué)生對圓規(guī)的用法有一個新的認識.3.在課堂練習(xí)中安排了度量一些三角形的邊的長度,目的是想通過度量使學(xué)生對“兩點之間線段最短”這一結(jié)論有一個感性的認識,并為下面的教學(xué)做一個鋪墊.
【教學(xué)目標】1.經(jīng)歷從不同方向觀察物體的活動過程,發(fā)展空間觀念;能在與他人交流的過程中,合理清晰地表達自己的思維過程.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的圖形.3.能識別簡單物體的三視圖,會畫立方體及其簡單組合體的三視圖.【基礎(chǔ)知識精講】1.主視圖、左視圖、俯視圖的定義從不同方向觀察同一物體,從正面看到的圖叫主視圖,從左面看到的圖叫左視圖,從上面看到的圖叫做俯視圖.2.幾種幾何體的三視圖(1)正方體:三視圖都是正方形.圓錐的主視圖、左視圖都是三角形,而俯視圖的圖中有一個點表示圓錐的頂點,因為從上往下看圓錐時先看到圓錐的頂點,再看到底面的圓.3.如何畫三視圖 當(dāng)用若干個小正方體搭成新的幾何體,如何畫這個新的幾何體的三視圖?
探究點三:列一元一次方程解應(yīng)用題某單位計劃“五一”期間組織職工到東湖旅游,如果單獨租用40座的客車若干輛則剛好坐滿;如果租用50座的客車則可以少租一輛,并且有40個剩余座位.(1)該單位參加旅游的職工有多少人?(2)如同時租用這兩種客車若干輛,問有無可能使每輛車剛好坐滿?如有可能,兩種車各租多少輛?(此問可只寫結(jié)果,不寫分析過程)解析:(1)先設(shè)該單位參加旅游的職工有x人,利用人數(shù)不變,車的輛數(shù)相差1,可列出一元一次方程求解;(2)可根據(jù)租用兩種汽車時,利用假設(shè)一種車的數(shù)量,進而得出另一種車的數(shù)量求出即可.解:(1)設(shè)該單位參加旅游的職工有x人,由題意得方程x40-x+4050=1,解得x=360,答:該單位參加旅游的職工有360人;(2)有可能,因為租用4輛40座的客車、4輛50座的客車剛好可以坐360人,正好坐滿.方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.
判斷下面抽樣調(diào)查選取樣本的方法是否合適:(1)檢查某啤酒廠即將出廠的啤酒質(zhì)量情況,先隨機抽取若干箱(捆),再在抽取的每箱(捆)中,隨機抽取1~2瓶檢查;(2)通過網(wǎng)上問卷調(diào)查方式,了解百姓對央視春節(jié)晚會的評價;(3)調(diào)查某市中小學(xué)生學(xué)習(xí)負擔(dān)的狀況,在該市每所小學(xué)的每個班級選取一名學(xué)生,進行問卷調(diào)查;(4)教育部為了調(diào)查中小學(xué)亂收費情況,調(diào)查了某市所有中小學(xué)生.解析:本題應(yīng)看樣本是否為簡單隨機樣本,是否具有代表性.解:(1)合適,這是一種隨機抽樣的方法,樣本為簡單隨機樣本.(2)不合適,我國農(nóng)村人口眾多,多數(shù)農(nóng)民是不上網(wǎng)的,所以調(diào)查的對象在總體中不具有代表性.(3)不合適,選取的樣本中個體太少.(4)不合適,樣本雖然足夠大,但遺漏了其他城市里的這些群體,應(yīng)在全國范圍內(nèi)分層選取樣本,除了上述原因外,每班的學(xué)生全部作為樣本是沒有必要的.
小明說:“我姐姐今年的年齡是我去年的年齡的2倍少6,”已知姐姐今年20歲,問小明今年幾歲?若取小明今年為x歲,則依據(jù)下面的等量關(guān)系式列方程:姐姐今年的年齡=小明去年年齡的2倍-6.得2(x-1)-6=20.例5解方程-3(x+1)=9總結(jié):根據(jù)乘法分配律和去括號法則(括號前面是“+”號,把“+”號和括號去掉,括號內(nèi)各項都不改變符號;括號前面是“-”號,把“-”號和括號去掉,括號內(nèi)各項都改變符號)去括號時要注意:1、 不要漏乘括號內(nèi)的任何一項;2、若括號前面是“-”號,記住去括號后括號內(nèi)各項都變號.習(xí)題訓(xùn)練:解方程,如課本P122練一練1,P113練一練2等.思維拓展,解簡單的應(yīng)用題,如課本P123練一練3或補充一些題,如含小括號、中括號、大括號的方程(這方面課本安排幾乎沒有,只限淺顯問題,教師不必深究)
某文具店一支鉛筆的售價為1.2元,一支圓珠筆的售價為2元.該店在“6·1兒童節(jié)”舉行文具優(yōu)惠售賣活動,鉛筆按原價打8折出售,圓珠筆按原價打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元.若設(shè)鉛筆賣出x支,則依題意可列得的一元一次方程為( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:設(shè)鉛筆賣出x支,根據(jù)“鉛筆按原價打8折出售,圓珠筆按原價打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元”,得出等量關(guān)系:x支鉛筆的售價+(60-x)支圓珠筆的售價=87,據(jù)此列出方程為1.2×0.8x+2×0.9(60-x)=87.故選B.方法總結(jié):解題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找到題目當(dāng)中的等量關(guān)系,最后列方程.三、板書設(shè)計教學(xué)過程中,通過對多種實際問題情境的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義,通過觀察、歸納一元一次方程的概念,使學(xué)生在分析實際問題情境的活動中體會數(shù)學(xué)與現(xiàn)實的密切聯(lián)系.
1.掌握有理數(shù)混合運算的順序,并能熟練地進行有理數(shù)加、減、乘、除、乘方的混合運算.2.在運算過程中能合理地應(yīng)用運算律簡化運算.一、情境導(dǎo)入在學(xué)完有理數(shù)的混合運算后,老師為了檢驗同學(xué)們的學(xué)習(xí)效果,出了下面這道題:計算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計算正確嗎?二、合作探究探究點一:有理數(shù)的混合運算計算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運算,運算時,一定要注意運算順序,尤其是本題中的乘除運算.要從左到右進行計算;(2)題有大括號、中括號,在運算時,可從里到外進行.注意要靈活掌握運算順序.
根據(jù)《中華人民共和國廣告法》,《中華人民共和國合同法》及國家有關(guān)法律、法規(guī)的規(guī)定,甲、乙雙方在平等、自愿、等價有償、誠實守信的基礎(chǔ)上,本著雙方互惠互利、精誠合作的原則,經(jīng)友好協(xié)商,就乙方委托甲方制作 新天地二期及苑南樓改造概念方案文本修改樣PPT文本 事宜達成以下協(xié)議:一、 項目概述1、 項目名稱: 2、 制作周期:始 年 月 日;止 年 月 日, 工作日3、 項目總金額:RMB(大寫) 元 , ¥: 元二、 乙方負責(zé)提供修改文本(基礎(chǔ)圖由甲方提供)約57張圖。二、 甲方權(quán)利與義務(wù)1、 甲方需向乙方提供詳盡的背景資料,并為乙方測量現(xiàn)場提供方便。2、 甲方有權(quán)監(jiān)督乙方在設(shè)計制作中諸如設(shè)計方案、圖紙是否設(shè)計合理等工作。3、 甲方提供專人協(xié)調(diào)與乙方的工作并對整個項目有建議權(quán)和終審權(quán)。三、 乙方權(quán)利與義務(wù)1、 乙方應(yīng)完全按照甲方提供的資料來完成該項目,在甲方同意情況下乙方可跟據(jù)自己的經(jīng)驗少作調(diào)整。 2、 乙方負責(zé)向甲方提供設(shè)計方案及最終效果圖。
一、 問題導(dǎo)學(xué)前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀錄和創(chuàng)紀錄的時間等,都是數(shù)值變量,數(shù)值變量的取值為實數(shù).其大小和運算都有實際含義.在現(xiàn)實生活中,人們經(jīng)常需要回答一定范圍內(nèi)的兩種現(xiàn)象或性質(zhì)之間是否存在關(guān)聯(lián)性或相互影響的問題.例如,就讀不同學(xué)校是否對學(xué)生的成績有影響,不同班級學(xué)生用于體育鍛煉的時間是否有差別,吸煙是否會增加患肺癌的風(fēng)險,等等,本節(jié)將要學(xué)習(xí)的獨立性檢驗方法為我們提供了解決這類問題的方案。在討論上述問題時,為了表述方便,我們經(jīng)常會使用一種特殊的隨機變量,以區(qū)別不同的現(xiàn)象或性質(zhì),這類隨機變量稱為分類變量.分類變量的取值可以用實數(shù)表示,例如,學(xué)生所在的班級可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時候,這些數(shù)值只作為編號使用,并沒有通常的大小和運算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關(guān)聯(lián)性問題.
問題1. 用一個大寫的英文字母或一個阿拉伯?dāng)?shù)字給教室里的一個座位編號,總共能編出多少種不同的號碼?因為英文字母共有26個,阿拉伯?dāng)?shù)字共有10個,所以總共可以編出26+10=36種不同的號碼.問題2.你能說說這個問題的特征嗎?上述計數(shù)過程的基本環(huán)節(jié)是:(1)確定分類標準,根據(jù)問題條件分為字母號碼和數(shù)字號碼兩類;(2)分別計算各類號碼的個數(shù);(3)各類號碼的個數(shù)相加,得出所有號碼的個數(shù).你能舉出一些生活中類似的例子嗎?一般地,有如下分類加法計數(shù)原理:完成一件事,有兩類辦法. 在第1類辦法中有m種不同的方法,在第2類方法中有n種不同的方法,則完成這件事共有:N= m+n種不同的方法.二、典例解析例1.在填寫高考志愿時,一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強項專業(yè),如表,
當(dāng)A,C顏色相同時,先染P有4種方法,再染A,C有3種方法,然后染B有2種方法,最后染D也有2種方法.根據(jù)分步乘法計數(shù)原理知,共有4×3×2×2=48(種)方法;當(dāng)A,C顏色不相同時,先染P有4種方法,再染A有3種方法,然后染C有2種方法,最后染B,D都有1種方法.根據(jù)分步乘法計數(shù)原理知,共有4×3×2×1×1=24(種)方法.綜上,共有48+24=72(種)方法.故選B.答案:B5.某藝術(shù)小組有9人,每人至少會鋼琴和小號中的一種樂器,其中7人會鋼琴,3人會小號,從中選出會鋼琴與會小號的各1人,有多少種不同的選法?解:由題意可知,在藝術(shù)小組9人中,有且僅有1人既會鋼琴又會小號(把該人記為甲),只會鋼琴的有6人,只會小號的有2人.把從中選出會鋼琴與會小號各1人的方法分為兩類.第1類,甲入選,另1人只需從其他8人中任選1人,故這類選法共8種;第2類,甲不入選,則會鋼琴的只能從6個只會鋼琴的人中選出,有6種不同的選法,會小號的也只能從只會小號的2人中選出,有2種不同的選法,所以這類選法共有6×2=12(種).因此共有8+12=20(種)不同的選法.
“整數(shù)乘法運算定律推廣到小數(shù)乘法”是在學(xué)生已經(jīng)掌握了小數(shù)乘法計算、整數(shù)乘法運算定律的基礎(chǔ)上進行教學(xué)的。教材通過幾組算式,讓學(xué)生計算出○的左右兩邊算式的得數(shù),找出它們的相等關(guān)系,總結(jié)出整數(shù)的運算定律對小數(shù)同樣適用。學(xué)好這部分內(nèi)容,不僅培養(yǎng)學(xué)生的邏輯思維能力,而且以后能用本課所學(xué)的使一些小數(shù)的計算簡便,也為以后學(xué)習(xí)用不同方法解答應(yīng)用題起著積極的推動作用。2、教學(xué)目標的確定:根據(jù)教材特點,依據(jù)數(shù)學(xué)課程標準的要求及學(xué)生實際,我確定本課教學(xué)目標如下:(1)知識能力目標:理解整數(shù)乘法運算定律對于小數(shù)乘法用樣適用,并能應(yīng)用這些定律進行一些簡便計算。(2)過程方法目標:引導(dǎo)學(xué)生在經(jīng)歷猜想、驗證等數(shù)學(xué)活動中,發(fā)展學(xué)生的思維能力。(3)情感態(tài)度目標:通過小組合作學(xué)習(xí),培養(yǎng)學(xué)生進行交流的能力與合作意識,體驗到解決問題策略的多樣性。結(jié)合相關(guān)內(nèi)容,滲透“事物間是普遍聯(lián)系”的觀點,對學(xué)生進行辨證唯物主義的啟蒙教育。
設(shè)計意圖:題目1是判斷能否折疊形成立體幾何,本題可以研究學(xué)生對常見幾何體的把握是否成熟。題目2是考察正方體的展開圖,一方面可以研究學(xué)生對幾何體的把握,另一方面可以引導(dǎo)學(xué)生思考,引出下面要學(xué)習(xí)的內(nèi)容。)學(xué)生預(yù)設(shè)回答:題目一:學(xué)生應(yīng)該很容易的說出折疊后形成的立體圖形。題目二:①運用動手操作的方法,剪出題目中的圖形,折疊后對題目做出判斷。 ②利用空間觀念,復(fù)原展開圖,發(fā)現(xiàn)6的對面是1,2的對面是4,5的對面是3,進而做出判斷。教師引導(dǎo)語預(yù)設(shè):① 當(dāng)學(xué)生運用動手操作的方法,可以讓學(xué)生動手實踐一下,下一步再引導(dǎo)學(xué)生觀察正方體,發(fā)現(xiàn)規(guī)律。② 當(dāng)學(xué)生運用空間觀念,教師要放慢語調(diào),和學(xué)生一起想象,鍛煉學(xué)生空間想象能力。
一、 閱讀來信和禮物券 1、(出示信封)今天早上,媽媽在信箱里發(fā)現(xiàn)了一封信,猜猜是誰寫給我們的? 2、猜謎語:紅眼睛,白皮襖/長耳朵,真靈巧/愛吃蘿卜和青菜/走起路來跳呀跳 3、喲,是寫給我們的呀!咦,會是誰給我們寫的信呢? 4、引導(dǎo)幼兒觀察信封右下角的兔奶奶:(老花眼鏡、額頭的皺紋等) 5、兔奶奶寫信給我們,不知道有什么事,讓我們一起看看,好嗎? 6、師生一起讀信(教師讀信,引導(dǎo)幼兒看圖) a、(蛋糕)這是什么呀?什么時候要吃蛋糕? B、原來,兔奶奶要生日了,她請我們?nèi)ジ墒裁矗磕悄銈冋l想去?