2教學(xué)目標(biāo)1、初步了解鼓的文化,激發(fā)學(xué)生熱愛我國民間民俗文化。2、用繪畫的方式表現(xiàn)人物動態(tài)。3重點難點教學(xué)重點:學(xué)習(xí)運用繪畫語言創(chuàng)作少數(shù)民族同胞打鼓的熱鬧場景。教學(xué)難點:畫面線形的把握和構(gòu)圖安排,顏色的搭配。
計算器的面板是由鍵盤和顯示器組成的。顯示器是用來顯示輸入的數(shù)據(jù)和計算結(jié)果的裝置。顯示器因計算器的種類不同而不同,有單行顯示的,也有雙行顯示的。在鍵盤的每個鍵上,都標(biāo)明了這個鍵的功能。我們看鍵盤上標(biāo)有的鍵,是開機鍵,在開始使用計算器時先要按一下這個鍵,以接通電源,計算器的電源一般用5號電池或鈕扣電池。再看鍵,是關(guān)機鍵,停止使用計算器時要按一下這個鍵,來切斷計算器的電源,是清除鍵,按一下這個鍵,計算器就清除當(dāng)前顯示的數(shù)與符號。的功能是完成運算或執(zhí)行命令。是運算鍵,按一下這個鍵,計算器就執(zhí)行加法運算。
內(nèi)容:分式方程的解法及應(yīng)用——初三中考數(shù)學(xué)第一輪復(fù)習(xí)學(xué)習(xí)目標(biāo):1、熟練利用去分母化分式方程為整式方程2、熟練利用分式方程的解法解決含參數(shù)的分式方程的問題重點:分式方程的解法(尤其要理解“驗”的重要性)難點:含參數(shù)的分式方程問題預(yù)習(xí)內(nèi)容:1、觀看《分式方程的解法》《含參數(shù)分式方程增根問題》《解含參分式方程》視頻2、完成預(yù)習(xí)檢測
1、互逆命題:在兩個命題中,如果第一個命題的條件是第二個命題的 ,而第一個命題的結(jié)論是第二個命題的 ,那么這兩個命題互逆命題,如果把其中一個命題叫做原命題,那么另一個命題叫做它的 .2、互逆定理:如果一個定理的逆命題也是 ,那么這個逆命題就是原來定理的逆定理.注意(1):逆命題、互逆命題不一定是真命題,但逆定理、互逆定理,一定是真命題.(2):不是所有的定理都有逆定理.自主學(xué)習(xí)診斷:如圖所示:(1)若∠A= ,則AC∥ED,( ).(2)若∠EDB= ,則AC∥ED,( ).(3)若∠A+ =1800,則AB∥FD,( ).(4)若∠A+ =1800,則AC∥ED,( ).
教學(xué)目標(biāo):1.引導(dǎo)幼兒參與學(xué)習(xí)活動,經(jīng)歷十幾減幾計算方法的探索與算理的建構(gòu)過程。2.根據(jù) 11 至 20 各數(shù)的組成,掌握 20 以內(nèi)不進位加法和不進位減法的計算方法。教學(xué)重點:十幾減幾(不退位)的計算。教學(xué)過程:一、復(fù)習(xí)導(dǎo)入復(fù)習(xí)10以內(nèi)的數(shù)的組合,11~20各數(shù)的組成。1.碰球游戲?qū)?,?fù)習(xí)10的分解組合2.老師分別出示數(shù)字卡片:14、17、12、11。幼兒說數(shù)的組成。
教學(xué)目標(biāo):1、使學(xué)生了解什么是毒品,毒品的種類,認識吸毒行為,認清毒品的危害性。2、通過圖文、吸毒而造成的悲慘事件,教育學(xué)生自覺遠離毒品,提高拒毒防毒意識和能力。3、讓學(xué)生認識吸毒成癮的途徑;認識吸毒成癮的原因,如何預(yù)防。懂得“珍愛生命,拒絕毒品”,培養(yǎng)禁毒意識,遵紀(jì)守法,抵制毒品,增強與毒品違法犯罪作斗爭的自覺性。教學(xué)重點:知道什么是毒品,吸毒的危害,如何提高抵制毒品的能力。
教學(xué)目標(biāo):1、使學(xué)生了解什么是毒品,毒品的種類,認識吸毒行為,認清毒品的危害性。2、通過圖文、吸毒而造成的悲慘事件,教育學(xué)生自覺遠離毒品,提高拒毒防毒意識和能力。3、讓學(xué)生認識吸毒成癮的途徑;認識吸毒成癮的原因,如何預(yù)防。懂得“珍愛生命,拒絕毒品”,培養(yǎng)禁毒意識,遵紀(jì)守法,抵制毒品,增強與毒品違法犯罪作斗爭的自覺性。教學(xué)重點:知道什么是毒品,吸毒的危害,如何提高抵制毒品的能力。
六、說學(xué)法本節(jié)課的學(xué)法主要是自主探究法、合作交流法。教法和學(xué)法是和諧統(tǒng)一的,相互聯(lián)系,密不可分。教學(xué)中要注意發(fā)揮學(xué)生的主體地位,充分調(diào)動學(xué)生的各種感官參與學(xué)習(xí),誘發(fā)其內(nèi)在的潛力,獨立主動的探索,使他們不僅學(xué)會,而且會學(xué)。學(xué)生通過小組合作的方式,自主探究設(shè)計出秋游方案,然后每個小組間進行交流,最后推選出最合理可行的方案。學(xué)生通過解決生活中的實際問題,從中發(fā)現(xiàn)與數(shù)學(xué)之間的聯(lián)系。并通過同伴間的交流、討論等多種方法制定出解決方案,他們從生活中抽象,在實踐中體驗,最后在討論中明理,從而得出了最佳的方案。七、說教學(xué)過程為了能很好地化解重點、突破難點達到預(yù)期的教學(xué)目標(biāo),我設(shè)計了三個教學(xué)環(huán)節(jié),下面,我就從這三個環(huán)節(jié)一一進行闡述。(一)創(chuàng)設(shè)情境、激發(fā)興趣
二、非選擇題【原創(chuàng)】11.以下是三個初中生的生活片段,請你運用所學(xué)知識,回答問題。片段一:上了初中的小偉感覺自己患上了“中二病",覺得現(xiàn)實的自己和想象 中的自己越來越脫節(jié)。在現(xiàn)實生活中越來越喜歡獨處,不喜歡與他人交流;但是 卻總是有著天馬行空般的想象,認為自己將會“拯救世界”,成為英雄。片段二:陰陰說:“自從上了初中之后,媽媽越來越不理解我了,總是過多的 干涉我的生活,我常常在學(xué)習(xí)和生活上和媽媽發(fā)生爭執(zhí)。"片段三:小孫從小學(xué)時各科成績就很優(yōu)秀,上了初中后科目變得更多了,但小 孫仍然不懼困難,保持著勤奮的學(xué)習(xí)態(tài)度。但是他卻發(fā)現(xiàn)自己不像小學(xué)時上課敢 主動回答問題了,老師提出的問題即使自己能夠回答得出來也不再主動舉手了。(1) 請問以上三個片段分別體現(xiàn)了青春期怎么樣的心理矛盾。(2) 以上心理矛盾可能會產(chǎn)生怎樣的影響?(3) 該如何克服青春期產(chǎn)生的心理矛盾呢?
4. 2021 年 10 月 7 日,公安機關(guān)接群眾舉報,網(wǎng)民“羅某平”在新浪微博發(fā)布侮辱抗 美援朝志愿軍英烈的違法言論,造成惡劣影響。對此認識不正確的是( )A.英雄烈士不容褻瀆,網(wǎng)絡(luò)空間不是法外之地B.網(wǎng)民羅某平的行為是行使言論自由的表現(xiàn)C.網(wǎng)民羅某平的行為是以侮辱、誹謗的方式侵害了英雄烈士名譽、榮譽的行為 D.廣大網(wǎng)民應(yīng)自覺遵守法律法規(guī),正確行使權(quán)利5.2022 年安徽省發(fā)布了《安徽省 12345 政務(wù)服務(wù)便民熱線管理暫行辦法》,12345 熱線 辦理工作實行首接負責(zé)制。承辦單位接到轉(zhuǎn)辦工單后 1 個工作日內(nèi)與訴求人取得聯(lián)系, 告知訴求人受理情況和承辦單位聯(lián)系方式。對于訴求人 3 次以上重復(fù)反映或 5 人次以上 集中反映的事項,熱線工作機構(gòu)要跟蹤督辦。 此舉能夠( )A.保障公民行使監(jiān)督權(quán)B.擴大公民的政治權(quán)利C.增強公民的自我保護D.解決公民的所有訴求6.向總理說句話,留言直達國務(wù)院。即日起至 2022 年全國兩會期間,中國政府網(wǎng)聯(lián)合 多家網(wǎng)絡(luò)媒體平臺, 以及各省區(qū)市、相關(guān)部委政府網(wǎng)站開展“我向總理說句話”網(wǎng)民建 言征集活動。這一做法( )A.能保障人民直接參與國家管理B.能及時解決網(wǎng)友提出的所有問題 C.有利于公民行使建議權(quán)、監(jiān)督權(quán) D.能廣開言路,想說什么就說什么
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進行度量。根據(jù)上述數(shù)據(jù)計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績波動范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會太遠;相反,如果射擊的成績波動幅度很大,那么大多數(shù)的射擊成績離平均成績會比較遠。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。
可以通過下面的步驟計算一組n個數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項與第i+1項的平均數(shù)。我們在初中學(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計樹人中學(xué)高一年級女生第25,50,75百分位數(shù)。
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識點,教師補充。 讓學(xué)生掌握本節(jié)課知識點,并能夠靈活運用。
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學(xué)生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進一 步領(lǐng) 會 注意 觀察 學(xué)生 是否 理解 知識 點 40
重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數(shù)的自變量 隨機變量 連續(xù)型隨機變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設(shè)情境 興趣導(dǎo)入 與正弦函數(shù)圖像的做法類似,可以用“五點法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數(shù)在一個周期內(nèi)的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關(guān)鍵點的橫坐標(biāo),分別令,,,,,求出對應(yīng)的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標(biāo),描出對應(yīng)五個關(guān)鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結(jié)各點,得到函數(shù)在一個周期內(nèi)的圖像(如圖). 圖 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進一 步領(lǐng) 會 注意 觀察 學(xué)生 是否 理解 知識 點 15
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設(shè)情境 興趣導(dǎo)入 基礎(chǔ)模塊中,曾經(jīng)學(xué)習(xí)了兩個計數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達航線,需要準(zhǔn)備多少種不同的機票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數(shù). 首先確定機票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計數(shù)原理,共有3×2=6種不同的方法,即需要準(zhǔn)備6種不同的飛機票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本?,上?!貞c. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結(jié) 歸納 分析 關(guān)鍵 詞語 思考 理解 記憶 引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題方法 20
一、定義: ,這一公式表示的定理叫做二項式定理,其中公式右邊的多項式叫做的二項展開式;上述二項展開式中各項的系數(shù) 叫做二項式系數(shù),第項叫做二項展開式的通項,用表示;叫做二項展開式的通項公式.二、二項展開式的特點與功能1. 二項展開式的特點項數(shù):二項展開式共(二項式的指數(shù)+1)項;指數(shù):二項展開式各項的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項式系數(shù)的下標(biāo)與上標(biāo)的差),第二字母依次升冪(其冪指數(shù)等于二項式系數(shù)的上標(biāo)),并且每一項中兩個字母的系數(shù)之和均等于二項式的指數(shù);系數(shù):各項的二項式系數(shù)下標(biāo)等于二項式指數(shù);上標(biāo)等于該項的項數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項展開式的功能注意到二項展開式的各項均含有不同的組合數(shù),若賦予a,b不同的取值,則二項式展開式演變成一個組合恒等式.因此,揭示二項式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項式問題的原始依據(jù).又注意到在的二項展開式中,若將各項中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項式公式也是不可或缺的理論依據(jù).
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細繩緊貼墻面,工人師傅被認為墻面垂直于地面,否則他就認為墻面不垂直于地面,這種方法說明了什么道理?
本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學(xué)習(xí),使學(xué)生明白對條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).