提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

部編人教版六年級上冊《狼牙山五壯士》說課稿(二)

  • 北師大初中數(shù)學九年級上冊黃金分割1教案

    北師大初中數(shù)學九年級上冊黃金分割1教案

    解析:想要看起來更美,則鞋底到肚臍的長度與身高之比應(yīng)為黃金比,此題應(yīng)根據(jù)已知條件求出肚臍到腳底的距離,再求高跟鞋的高度.解:設(shè)肚臍到腳底的距離為x m,根據(jù)題意,得x1.60=0.60,解得x=0.96.設(shè)穿上y m高的高跟鞋看起來會更美,則y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她應(yīng)該穿約為7.5cm高的高跟鞋看起來會更美.易錯提醒:要準確理解黃金分割的概念,較長線段的長是全段長的0.618.注意此題中全段長是身高與高跟鞋鞋高之和.三、板書設(shè)計黃金分割定義:一般地,點C把線段AB分成兩條線段AC 和BC,如果ACAB=BCAC,那么稱線段AB被點 C黃金分割黃金分割點:一條線段有兩個黃金分割點黃金比:較長線段:原線段=5-12:1 經(jīng)歷黃金分割的引入以及黃金分割點的探究過程,通過問題情境的創(chuàng)設(shè)和解決過程,體會黃金分割的文化價值,在應(yīng)用中進一步理解相關(guān)內(nèi)容,在實際操作、思考、交流等過程中增強學生的實踐意識和自信心.感受數(shù)學與生活的緊密聯(lián)系,體會數(shù)學的思維方式,增進數(shù)學學習的興趣.

  • 北師大初中數(shù)學九年級上冊黃金分割2教案

    北師大初中數(shù)學九年級上冊黃金分割2教案

    2.如何找一條線段的黃金分割點,以及會畫黃金矩形.3.能根據(jù)定義判斷某一點是否為一條線段的黃金分割點.Ⅳ.課后作業(yè)習題4.8Ⅴ.活動與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個端點,選擇AB的黃金分割點C作為第一個試驗點,C點的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗的結(jié)果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進行第二次試 驗.這次的試驗點應(yīng)該選AC的黃金分割點D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點還不理想,可以按黃金分割的方法繼續(xù)試驗下去.如果太濃,可以選DC之間的黃金分割 點 ;如果太稀,可以選AD之間的黃金分割點,用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進行科學試驗,可以用最少的試驗次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時間,也節(jié)約了原材料.●板書設(shè)計

  • 北師大初中數(shù)學九年級上冊比例的性質(zhì)1教案

    北師大初中數(shù)學九年級上冊比例的性質(zhì)1教案

    若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設(shè)計比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0),   那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會類比的思想,提高學生探究、歸納的能力.通過問題情境的創(chuàng)設(shè)和解決過程進一步體會數(shù)學與生活的緊密聯(lián)系,體會數(shù)學的思維方式,增強學習數(shù)學的興趣.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)2教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)2教案

    2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫出這個反比例函數(shù)的表達式;(2)根據(jù)表達式完成上表。教師巡視個別輔導,學生完畢教師給予評估肯定。II鞏固練習:限時完成課本“隨堂練習”1-2題。教師并給予指導。七、總結(jié)、提高。(結(jié)合板書小結(jié))今天通過生活中的例子,探索學習了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對兩種變化量,并且這兩個變化的量可以寫成 (k為常數(shù),k≠0)同時要注意幾點::①常數(shù)k≠0;②自變量x不能為零(因為分母為0時,該式?jīng)]意義);③當 可寫為 時注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個變量相對應(yīng) 的任意一對對應(yīng)值的積來求得,只要k確定了,這個函數(shù)就確定了。

  • 北師大初中數(shù)學九年級上冊矩形的判定2教案

    北師大初中數(shù)學九年級上冊矩形的判定2教案

    2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)

  • 北師大初中數(shù)學九年級上冊矩形的判定1教案

    北師大初中數(shù)學九年級上冊矩形的判定1教案

    在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結(jié):本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關(guān)鍵.三、板書設(shè)計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學生親身經(jīng)歷知識的發(fā)生過程,并會運用定理解決相關(guān)問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學生的邏輯推理能力.

  • 北師大初中數(shù)學九年級上冊菱形的性質(zhì)2教案

    北師大初中數(shù)學九年級上冊菱形的性質(zhì)2教案

    1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數(shù)是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積

  • 北師大初中數(shù)學九年級上冊菱形的判定2教案

    北師大初中數(shù)學九年級上冊菱形的判定2教案

    方法三:一個同學先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結(jié)論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形

  • 北師大初中數(shù)學九年級上冊菱形的判定1教案

    北師大初中數(shù)學九年級上冊菱形的判定1教案

    (1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個四邊形是菱形時,要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設(shè)計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進一步提高學生的推理論證能力,體會證明過程中所運用的歸納概括以及轉(zhuǎn)化等數(shù)學方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.

  • 北師大初中數(shù)學九年級上冊相似多邊形1教案

    北師大初中數(shù)學九年級上冊相似多邊形1教案

    (2)如果對應(yīng)著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時,能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對應(yīng)邊是否成比例來判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關(guān)系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設(shè)兩個矩形相似,不妨設(shè)小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因為矩形的四個角均是直角,所以在有關(guān)矩形相似的問題中,只需看對應(yīng)邊是否成比例,若成比例,則相似,否則不相似.

  • 北師大初中數(shù)學九年級上冊相似多邊形2教案

    北師大初中數(shù)學九年級上冊相似多邊形2教案

    (2)相似多邊形的對應(yīng)邊的比稱為相似比;(3)當相似比為1時,兩個多邊形全等.二、運用相似多邊形的性質(zhì).活動3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動:教師出示例題,提出問題;學生活動:學生通過例題運用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長度 .(2人板演)活動41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實際距離.2.如圖所示的兩個直角三角形相似嗎?為什么?3.如圖所示的兩個五邊形相似,求未知邊 、 、 、 的長度.教師活動:在活動中,教師應(yīng)重點關(guān)注:(1)學生參與活動的熱情及語言歸納數(shù)學結(jié)論的能力;(2)學生對于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談?wù)劚竟?jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習題4.4

  • 北師大初中七年級數(shù)學上冊頻數(shù)直方圖教案2

    北師大初中七年級數(shù)學上冊頻數(shù)直方圖教案2

    [師]同學們想一想,你同父母一起去商店買衣服時,衣服上的號碼都有哪些,標志是什么?[生]我看到有些衣服上標有M、S、L、XL、XXL等號碼.但我不清楚代表的具體范圍.適合什么人穿.但肯定與身高、胖瘦有關(guān).[師]這位同學很善動腦,也愛觀察. S代表最小號,身高在150~155 cm的人適合穿S號.M號適合身高在155~160 cm的人群著裝…….廠家做衣服訂尺寸也并不是按所有人的尺寸定做,而是按某個范圍分組批量生產(chǎn).如何確定組距與組數(shù)呢?分組組數(shù)的確定,不僅與數(shù)據(jù)多少有關(guān),還與數(shù)據(jù)的取值情況有關(guān).在實際決定組數(shù)時,常有一個嘗試過程:先定組距,再計算出相應(yīng)的組數(shù).看看這個組數(shù)是否大致符合確定組數(shù)的經(jīng)驗法則.在嘗試中,往往要比較相應(yīng)于幾個組距的組數(shù),然后從中選定一個較為合適的組數(shù).我們一起看下表:小亮的做法.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)1教案

    解:(1)根據(jù)題意,可得y=100025x,化簡得y=40x;(2)根據(jù)題設(shè)可知自變量x的取值范圍為0<x<85.方法總結(jié):反比例函數(shù)的自變量取值范圍是全體非零實數(shù),但在解決實際問題的過程中,自變量的取值范圍要根據(jù)實際情況來確定.解題過程中應(yīng)該注意對題意的正確理解.三、板書設(shè)計反比例函數(shù)概念:一般地,如果兩個變量x,y之間 的對應(yīng)關(guān)系可以表示成y=kx(k 為常數(shù),k≠0)的形式,那么稱y 是x的反比例函數(shù),反比例函數(shù) 的自變量x不能為0確定表達式:待定系數(shù)法建立反比例函數(shù)的模型結(jié)合實例引導學生了解所討論的函數(shù)的表達形式,形成反比例函數(shù)概念的具體形象,從感性認識到理性認識的轉(zhuǎn)化過程,發(fā)展學生的思維.利用多媒體創(chuàng)設(shè)大量生活情境,讓學生體驗數(shù)學來源于生活實際,并為生活實際服務(wù),讓學生感受數(shù)學有用,從而培養(yǎng)學生學習數(shù)學的興趣.

  • 北師大初中七年級數(shù)學上冊第三章復(fù)習教案

    北師大初中七年級數(shù)學上冊第三章復(fù)習教案

    一.學習目的和要求:1.對本章內(nèi)容的認識更全面、更系統(tǒng)化。2.進一步加深對本章基礎(chǔ)知識的理解以及基本技能的掌握,并能靈活運用。二.學習重點和難點:重點:本章基礎(chǔ)知識的歸納、總結(jié);基礎(chǔ)知識的運用;整式的加減運算的靈活運用。難點:本章基礎(chǔ)知識的歸納、總結(jié);基礎(chǔ)知識的運用;整式的加減運算的靈活運用與提高。三.學習方法:歸納,總結(jié) 交流、練習 探究 相結(jié)合 四.教學目標和教學目標解析:教學目標1 同類項 同類項:所含字母相同,并且相同字母的指數(shù)也分別相等的項,另外所有的常數(shù)項都是同類項。例如: 與 是同類項; 與 是同類項。注意:同類項與系數(shù)大小無關(guān),與字母的排列順序無關(guān)。教學目標2 合并同類項法則 合并同類項法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)保持不變,如: 。

  • 北師大初中數(shù)學八年級上冊定理與證明2教案

    北師大初中數(shù)學八年級上冊定理與證明2教案

    第一環(huán)節(jié):回顧引入活動內(nèi)容:①什么叫做定義?舉例說明.②什么叫命題?舉例說明. 活動目的:回顧上節(jié)知識,為本節(jié)課的展開打好基礎(chǔ).教學效果:學生舉手發(fā)言,提問個別學生.第二環(huán)節(jié):探索命題的結(jié)構(gòu)活動內(nèi)容:① 探討命題的結(jié)構(gòu)特征觀察下列命題,發(fā)現(xiàn)它們的結(jié)構(gòu)有什么共同特征?(1)如果兩個三角形的三條邊對應(yīng)相等,那么這兩個三角形全等.(2)如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等.(3)如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形.(4)如果一個四邊的對角線相等,那么這個四邊形是矩形.(5)如果一個四邊形的兩條對角線互相垂直,那么這個四邊形是菱形.② 總結(jié)命題的結(jié)構(gòu)特征(1)上述命題都是“如果……,那么……”的形式.(2)“如果……”是已知的事項,“那么……”是由已知事項推斷出的結(jié)論.

  • 北師大初中數(shù)學八年級上冊定理與證明1教案

    北師大初中數(shù)學八年級上冊定理與證明1教案

    求證:直角三角形的兩個銳角互余.解析:分析這個命題的條件和結(jié)論,根據(jù)已知條件和結(jié)論畫出圖形,寫出已知、求證,并寫出證明過程.已知:如圖所示,在△ABC中,∠C=90°.求證:∠A與∠B互余.證明:∵∠A+∠B+∠C=180°(三角形內(nèi)角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A與∠B互余.方法總結(jié):解此類題首先根據(jù)題意將文字語言變成符號語言,畫出圖形,最后再經(jīng)過分析論證,并寫出證明的過程.三、板書設(shè)計命題分類公理:公認的真命題定理:經(jīng)過證明的真命題證明:推理的過程經(jīng)歷實際情境,初步體會公理化思想和方法,了解本教材所采用的公理,讓學生對真假命題有一個清楚的認識,從而進一步了解定理、公理的概念.培養(yǎng)學生的語言表達能力.

  • 北師大初中數(shù)學八年級上冊平均數(shù)1教案

    北師大初中數(shù)學八年級上冊平均數(shù)1教案

    解析:本題是要求兩個未知數(shù),即3和4的權(quán).所以應(yīng)把平均數(shù)與方程組綜合起來,利用平均數(shù)的定義來列方程,組成方程組求解.解:設(shè)投進3個球的有x人,投進4個球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進3個球的有9人,投進4個球的有3人.方法總結(jié):利用平均數(shù)的公式解題時,要弄清數(shù)據(jù)及相應(yīng)的權(quán),避免出錯.三、板書設(shè)計平均數(shù)算術(shù)平均數(shù):x=1n(x1+x2+…+xn)加權(quán)平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術(shù)平均數(shù)和加權(quán)平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學生的思維能力;通過有關(guān)平均數(shù)問題的解決,提升學生的數(shù)學應(yīng)用能力.通過解決實際問題,體會數(shù)學與社會生活的密切聯(lián)系,了解數(shù)學的價值,增進學生對數(shù)學的理解和增加學好數(shù)學的信心.

  • 北師大初中數(shù)學八年級上冊確定位置2教案

    北師大初中數(shù)學八年級上冊確定位置2教案

    第一環(huán)節(jié)感受生活中的情境,導入新課通過若干圖片,引導學生感受生活中常常需要確定位置.導入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數(shù)軸上,確定一個點的位置需要幾個數(shù)據(jù)呢? 答:一個,例如,若A點表示-2,B點表示3,則由-2和3就可以在數(shù)軸上找到A點和B點的位置??偨Y(jié)得出結(jié)論:在直線上, 確定一個點的位置一般需要一個數(shù)據(jù).(2)啟新:在平面內(nèi),又如何確定一個點的位置呢?請同學們根據(jù)生活中確定位置的實例,請談?wù)勛约旱目捶?2.舉例探究Ⅰ. 探究1(1)在電影院內(nèi)如何找到電影票上指定的位置?(2)在電影票上“6排3號”與“3排6號”中的“6”的含義有什么不同?(3)如果將“6排3號”簡記作(6,3),那么“3排6號”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內(nèi),確定一個座位一般需要幾個數(shù)據(jù)?結(jié)論:生活中常常用“排數(shù)”和“號數(shù)”來確定位置. Ⅱ. 學有所用(1) 你能用兩個數(shù)據(jù)表示你現(xiàn)在所坐的位置嗎?

  • 北師大初中數(shù)學九年級上冊矩形的性質(zhì)1教案

    北師大初中數(shù)學九年級上冊矩形的性質(zhì)1教案

    解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設(shè)BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結(jié):矩形的折疊問題是常見的問題,本題的易錯點是對△BED是等腰三角形認識不足,解題的關(guān)鍵是對折疊后的幾何形狀要有一個正確的分析.三、板書設(shè)計矩形矩形的定義:有一個角是直角的平行四邊形    叫做矩形矩形的性質(zhì)四個角都是直角兩組對邊分別平行且相等對角線互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質(zhì)上來,明確矩形是特殊的平行四邊形.培養(yǎng)學生的推理能力以及自主合作精神,掌握幾何思維方法,體會邏輯推理的思維價值.

  • 小學科學教科版四年級上冊《保護我們的聽力》教案

    小學科學教科版四年級上冊《保護我們的聽力》教案

    過程與方法:通過閱讀保護聽力的資料,了解我們的聽力經(jīng)常受到哪些傷害,知道保護聽力的做法。情感、態(tài)度、價值觀:認識到保護聽力的重要性,養(yǎng)成良好的用耳習慣和在公共場所保持肅靜的習慣。教學重點認識到保護聽力的重要性教學難點知道各種控制噪音的方法教學準備發(fā)音罐、報紙、毛巾、棉花等

上一頁123...737475767778798081828384下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!