一是突出立新規(guī)、樹新風(fēng),確保政局大局持續(xù)穩(wěn)定。換屆在即,新老交替,非常時(shí)期,非常之舉。要堅(jiān)決做到思想不準(zhǔn)散、工作不準(zhǔn)斷、秩序不準(zhǔn)亂,決不能得“換屆病”,決不能耍“換屆假”,決不能讓職責(zé)掛“空檔”。要堅(jiān)持做到市委和X同志代表市委研究決定的事項(xiàng)不變,現(xiàn)有市委、人大、政府、政協(xié)領(lǐng)導(dǎo)班子成員的分工不變,市委運(yùn)行機(jī)制不變,確保政策穩(wěn)定性、工作連貫性和發(fā)展連續(xù)性。要暫停一般性休假請(qǐng)假,暫停一般性學(xué)習(xí)培訓(xùn),暫停一般性外出考察。暫停是原則,特殊是例外,確實(shí)有特殊情況的,從嚴(yán)從緊、嚴(yán)格按規(guī)定程序?qū)徟?/p>
一是面對(duì)形勢(shì)要警惕。俗話說“大疫之后有大災(zāi)”,新冠肺炎的全球大流行、防汛抗旱,與氣候、環(huán)境都是分不開的。從全球看,氣候變化異常,突發(fā)性、極端性、不可預(yù)見性天氣日益增多。從全國(guó)看,專家預(yù)測(cè),今年我國(guó)氣象水文年景總體偏差,極端事件偏多,區(qū)域性暴雨洪澇重于常年,澇重于旱。自X年以來,X河X年沒有發(fā)生流域性大洪水,今年發(fā)生大洪水幾率持續(xù)上升。從全市看,氣象部門預(yù)測(cè)我市汛期極端天氣氣候事件偏多,入、出梅時(shí)間均較常年偏晚,梅雨量較常年略少,汛期平均氣溫偏高,發(fā)生階段性旱澇的可能性較大,部分地區(qū)可能有伏旱。
(一)例題引入籃球聯(lián)賽中,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝1場(chǎng)得2分,負(fù)1場(chǎng)得1分。某隊(duì)在10場(chǎng)比賽中得到16分,那么這個(gè)隊(duì)勝負(fù)場(chǎng)數(shù)分別是多少?方法一:(利用之前的知識(shí),學(xué)生自己列出并求解)解:設(shè)剩X場(chǎng),則負(fù)(10-X)場(chǎng)。方程:2X+(10-X)=16方法二:(老師帶領(lǐng)學(xué)生一起列出方程組)解:設(shè)勝X場(chǎng),負(fù)Y場(chǎng)。根據(jù):勝的場(chǎng)數(shù)+負(fù)的場(chǎng)數(shù)=總場(chǎng)數(shù) 勝場(chǎng)積分+負(fù)場(chǎng)積分=總積分得到:X+Y=10 2X+Y=16
一、定義: ,這一公式表示的定理叫做二項(xiàng)式定理,其中公式右邊的多項(xiàng)式叫做的二項(xiàng)展開式;上述二項(xiàng)展開式中各項(xiàng)的系數(shù) 叫做二項(xiàng)式系數(shù),第項(xiàng)叫做二項(xiàng)展開式的通項(xiàng),用表示;叫做二項(xiàng)展開式的通項(xiàng)公式.二、二項(xiàng)展開式的特點(diǎn)與功能1. 二項(xiàng)展開式的特點(diǎn)項(xiàng)數(shù):二項(xiàng)展開式共(二項(xiàng)式的指數(shù)+1)項(xiàng);指數(shù):二項(xiàng)展開式各項(xiàng)的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項(xiàng)式系數(shù)的下標(biāo)與上標(biāo)的差),第二字母依次升冪(其冪指數(shù)等于二項(xiàng)式系數(shù)的上標(biāo)),并且每一項(xiàng)中兩個(gè)字母的系數(shù)之和均等于二項(xiàng)式的指數(shù);系數(shù):各項(xiàng)的二項(xiàng)式系數(shù)下標(biāo)等于二項(xiàng)式指數(shù);上標(biāo)等于該項(xiàng)的項(xiàng)數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項(xiàng)展開式的功能注意到二項(xiàng)展開式的各項(xiàng)均含有不同的組合數(shù),若賦予a,b不同的取值,則二項(xiàng)式展開式演變成一個(gè)組合恒等式.因此,揭示二項(xiàng)式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項(xiàng)式問題的原始依據(jù).又注意到在的二項(xiàng)展開式中,若將各項(xiàng)中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項(xiàng)式公式也是不可或缺的理論依據(jù).
本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對(duì)復(fù)數(shù)的拓展延伸,這樣更有利于我們對(duì)復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實(shí)際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實(shí)際問題;5.數(shù)學(xué)運(yùn)算:能夠正確運(yùn)用復(fù)數(shù)三角形式計(jì)算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習(xí)鞏固的過程,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:?jiǎn)栴}一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個(gè)要素來表示復(fù)數(shù)呢?如何表示?
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點(diǎn),且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點(diǎn)C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個(gè)平面相交,如果它們所成的二面角是直二面角,就說這兩個(gè)平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時(shí),常用鉛錘來檢測(cè)所砌的墻面與地面是否垂直,如果系有鉛錘的細(xì)繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說明了什么道理?
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績(jī)存在差異,那么,如何度量這種差異呢?我們可以利用極差進(jìn)行度量。根據(jù)上述數(shù)據(jù)計(jì)算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績(jī)波動(dòng)范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個(gè)值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績(jī)很穩(wěn)定,那么大多數(shù)的射擊成績(jī)離平均成績(jī)不會(huì)太遠(yuǎn);相反,如果射擊的成績(jī)波動(dòng)幅度很大,那么大多數(shù)的射擊成績(jī)離平均成績(jī)會(huì)比較遠(yuǎn)。因此,我們可以通過這兩組射擊成績(jī)與它們的平均成績(jī)的“平均距離”來度量成績(jī)的波動(dòng)幅度。
可以通過下面的步驟計(jì)算一組n個(gè)數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計(jì)算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項(xiàng)數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項(xiàng)與第i+1項(xiàng)的平均數(shù)。我們?cè)诔踔袑W(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實(shí)際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個(gè)分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計(jì)中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計(jì)樹人中學(xué)高一年級(jí)女生第25,50,75百分位數(shù)。
(6)交流。6的乘法口訣一共有幾句?口訣中的第一個(gè)數(shù)與算式中的第二個(gè)因數(shù)相同,表示什么?口訣中的第二個(gè)數(shù)與算式的第一個(gè)因數(shù)相同,表示什么?相鄰兩句口訣的積相差幾?哪幾句難記一些?你用什么方法記呢?怎樣記住"三六十八"、"四六二十四"兩句口訣?教師在學(xué)生發(fā)言的基礎(chǔ)上鼓勵(lì)學(xué)生大膽說、想出不同記口訣的方法。(7)應(yīng)用"做一做"第1題(學(xué)生半獨(dú)立完成):①用6根小棒擺1個(gè)六邊形;②擺2個(gè)六邊形要用多少根小棒?你是怎樣想的?(想口訣"二六十二"。)③運(yùn)用所學(xué)的口訣口答擺4個(gè)、6個(gè)、3個(gè)、5個(gè)六邊形所需要向小棒數(shù)。"做一做"第2題(獨(dú)立完成):①將第2題改為填空題,在圓圈內(nèi)填寫正確的積;②口答得數(shù),并說一說所用口訣。
課堂教學(xué)設(shè)計(jì)說明求比一個(gè)數(shù)少幾的數(shù)的應(yīng)用題是低年級(jí)教學(xué)的一個(gè)難點(diǎn).為了分散難點(diǎn),在復(fù)習(xí)準(zhǔn)備階段做了孕伏.如:圓比三角形多2個(gè),也可以說三角形比圓少2個(gè).為了突破難點(diǎn),讓學(xué)生動(dòng)手?jǐn)[、動(dòng)口說、動(dòng)筆寫,全方位地調(diào)動(dòng)學(xué)生的各種感官參與教學(xué)全過程,使學(xué)生在參與學(xué)習(xí)的活動(dòng)中領(lǐng)悟出“求比一個(gè)數(shù)少幾的數(shù)”的應(yīng)用題仍然是把較大數(shù)看作兩部分組成的,從大數(shù)中去掉大數(shù)比小數(shù)多的部分,就是小數(shù)與大數(shù)同樣多的部分,也就是小數(shù)的數(shù)值.也可以通過“假設(shè)同樣多”去透徹地理解比一個(gè)數(shù)少幾的實(shí)際意義.確實(shí)使學(xué)生理解和掌握了這類應(yīng)用題用減法計(jì)算的道理和解答方法.為了讓學(xué)生進(jìn)一步加深理解和掌握“求比一個(gè)數(shù)少幾的數(shù)”的應(yīng)用題的數(shù)量關(guān)系和解答方法,在鞏固練習(xí)的最后設(shè)計(jì)了一組對(duì)比題目.
l尺子上每相鄰的兩條長(zhǎng)刻度線之間的一大格的長(zhǎng)度都是1厘米。師:我們大家現(xiàn)在一起用手比劃一下,1厘米多長(zhǎng)?;ハ嗫匆幌?,計(jì)住了嗎?閉上眼睛想一想,1厘米有多長(zhǎng)。3、認(rèn)識(shí)幾厘米師:我們現(xiàn)在知道1厘米有多長(zhǎng)了,那3厘米又有多長(zhǎng)呢?師:同學(xué)們還能在尺子上找到其他3厘米的長(zhǎng)度嗎?4、用厘米量師:剛才上課時(shí),老師展示的2根線繩,到底哪一根長(zhǎng)一點(diǎn)呢?現(xiàn)在,同學(xué)們先估計(jì)一下這兩根線繩各自多長(zhǎng),然后在測(cè)量比較一下,好嗎?師:結(jié)果是哪根線繩長(zhǎng)一點(diǎn)呢?能說說你是怎么量的嗎?三、知識(shí)拓展1、師:老師這里有一把尺子,可是它斷了一節(jié),沒有刻度“0”,只剩下刻度3到刻度10,那么這把尺子能不能用來量物體的長(zhǎng)度???同學(xué)們能不能幫老師想一想辦法,好嗎?2、其他測(cè)量長(zhǎng)度的工具(課件展示)
教學(xué)過程:一、故事導(dǎo)入1.出示主題圖配合音樂,師:“有一只蜻蜓在動(dòng)物城里玩,遇到了辛勤工作的蜜蜂,看見了一座座漂亮的房屋。”蝴蝶說:“瞧。自己做了一件衣服,但是穿起來很不合身,怎么辦?”(出現(xiàn)三種不對(duì)稱的衣服圖形)“于是,蝴蝶去找蜻蜓幫忙?!?.師:“一路上,蝴蝶看到許多美麗的景色,遇見許多動(dòng)物朋友。瞧,美麗的孔雀走來了,還有知了、七星瓢蟲、螃蟹?!?.師:“小朋友,它們美嗎?你能說說你覺得它們哪兒美?(學(xué)生自由回答)那咱們把它們畫下來,好嗎?”二、初步感知對(duì)稱圖形的特點(diǎn)1.(指著蝴蝶形)師:“這么美的圖形你想不想剪出一個(gè)來?請(qǐng)小朋友們拿出一張彩紙,用剪刀剪出這只蝴蝶,行嗎?”(請(qǐng)學(xué)生說一說怎么剪的?)師:“有的小朋友剪出的蝴蝶為什么不像呢?為什么有的小朋友又能剪出美麗的蝴蝶呢?蝴蝶的形狀到底有什么特點(diǎn),讓咱們來研究研究。”
1、試驗(yàn)性操作實(shí)驗(yàn)師:大家說紅花的照片能不能用方格代表?下面請(qǐng)同學(xué)們用方格代表紅花的照片,用我們的學(xué)具卡片擺出紅花的朵數(shù)。(學(xué)生操作,教師巡視。)師:大家說黃花的朵數(shù)能不能也可以這樣操作出?請(qǐng)同學(xué)們用上面的方法再操作出黃花的朵數(shù)。(學(xué)生操作)師:同學(xué)們已經(jīng)擺出了紅花的朵數(shù)和黃花的朵數(shù),怎么操作才能知道紅花和黃花一共是多少朵?(把紅花的朵數(shù)和黃花的朵數(shù)合并起來數(shù)一數(shù))(學(xué)生操作,教師巡視。)師:請(qǐng)把合并起來的數(shù)整理一下,讓人一看就能知道是多少朵好嗎?請(qǐng)同學(xué)們寫出算式的答案。(即操作表達(dá)式)教師多媒體演示全部操作實(shí)驗(yàn)過程,并簡(jiǎn)單小結(jié)。2、驗(yàn)證性操作實(shí)驗(yàn)師:同學(xué)們,假如紅花是56朵,黃花是38朵,求“紅花和黃花共幾朵?”你們還能不能用上面的操作實(shí)驗(yàn)方法來解決?(能)好!那就請(qǐng)你們?cè)囋嚳?。(學(xué)生操作,教師巡視。)
1、讓學(xué)生仔細(xì)觀察,練習(xí)二十二1題圖,你看到了什么?生:舉手自由口答。2、師:根據(jù)這些信息,你能提出什么問題?板書學(xué)生提出問題在此基礎(chǔ)上,師生重點(diǎn)解決問題3、小黑板出數(shù)統(tǒng)計(jì)表、統(tǒng)計(jì)圖(1)學(xué)生在樹上獨(dú)立完成(2)上臺(tái)展示并回答問題(3)師質(zhì)疑:你還能提出哪些問題?[設(shè)計(jì)意圖]:通過統(tǒng)計(jì)停車場(chǎng)每種車的數(shù)量,把解決問題和統(tǒng)計(jì)知識(shí)綜合進(jìn)來,鞏固所學(xué)統(tǒng)計(jì)知識(shí)和解決問題,體驗(yàn)怎樣收集信息。二、生活應(yīng)用1、出示97頁2題(1)同桌觀察理解(2)獨(dú)立在書上完成2、互相糾錯(cuò)評(píng)價(jià),教師巡視輔導(dǎo)。3、質(zhì)疑:你還能提出什么問題?[設(shè)計(jì)意圖]:讓學(xué)生通過數(shù)“正”字來收集信息。三、開放實(shí)踐1、p97頁3題4題(1)學(xué)生以小組為單位展開討論統(tǒng)計(jì)。(1、2、3組做3題,4、5、6組做4題)(2)展示師生互評(píng)[設(shè)計(jì)意圖]:讓學(xué)生發(fā)揮主體性去調(diào)查收集數(shù)據(jù),根據(jù)自己的能力提出并回答一些問題。
【課中安排學(xué)唱《可愛的角》這首歌曲,旋律是學(xué)生熟悉并喜愛的,加上簡(jiǎn)明扼要的歌詞和動(dòng)作,提高了孩子們的興趣?!克?、課堂活動(dòng)(課件出示)1.辨角。用你火眼金睛找出哪些是角?哪些不是角?為什么?(練習(xí)八的第1題)【在學(xué)生對(duì)角建立起概念的前提下,讓學(xué)生做該練習(xí),從而加深了學(xué)生對(duì)角的認(rèn)識(shí),增強(qiáng)分析、判斷能力。這個(gè)練習(xí)可以叫它“跟隨”練習(xí),即剛學(xué)會(huì)一個(gè)新的概念,認(rèn)識(shí)一個(gè)新的內(nèi)容之后,緊跟著的一個(gè)比較容易的以選擇和判斷為主的練習(xí)?!?.?dāng)?shù)角(練習(xí)八的第2題)。師:小馬看見小朋友們都認(rèn)識(shí)了角,非常高興,看看天色不早了,趕緊趕路,跑了一會(huì)兒,看見圖形王國(guó)里面有許多圖形,但小馬不知道各有幾個(gè)角?小朋友們能幫助它數(shù)一數(shù)嗎?【這是一道“鞏固”練習(xí),讓學(xué)生將所學(xué)知識(shí)做一次運(yùn)用,難度稍加大,但學(xué)生能做出來,并且能找到練習(xí)中的規(guī)律,能享受到一種成就感。】
●教學(xué)內(nèi)容:教科書第27頁的內(nèi)容?!窠虒W(xué)目標(biāo):①通過創(chuàng)設(shè)具體的情境,使學(xué)生初步學(xué)會(huì)加法的驗(yàn)算,并通過加法驗(yàn)算方法的交流、讓學(xué)生體會(huì)算法的多樣化。②培養(yǎng)學(xué)生探索合作交流的意識(shí)和能力。③讓學(xué)生用所學(xué)到的驗(yàn)算知識(shí)去解決生活中的問題,體會(huì)用數(shù)學(xué)的樂趣?!窠叹邷?zhǔn)備:老師準(zhǔn)備掛圖或課件?!窠虒W(xué)過程:創(chuàng)設(shè)情境、導(dǎo)入新課。師:同學(xué)們,你們與爸爸、媽媽去超市買過東西嗎?生:互相說說,再請(qǐng)同學(xué)發(fā)表意見。師:(掛圖1)我們來看掛圖,小明和媽媽去超市買東西,從圖1中你看到了什么?生1:從圖1中我看到了小明媽媽買了一套135元的運(yùn)動(dòng)服和一雙48元的運(yùn)動(dòng)鞋。生2:從圖1中我看到小明媽媽給了售貨員200元。生3:要知道一套運(yùn)動(dòng)服和一雙運(yùn)動(dòng)鞋一共要多少元?應(yīng)用加法計(jì)算。師:全班動(dòng)手計(jì)算。板書:135+48=183(元)
新知講授(一)——古典概型 對(duì)隨機(jī)事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個(gè)特征的試驗(yàn)稱為古典概型試驗(yàn),其數(shù)學(xué)模型稱為古典概率模型,簡(jiǎn)稱古典概型。即具有以下兩個(gè)特征:1、有限性:樣本空間的樣本點(diǎn)只有有限個(gè);2、等可能性:每個(gè)樣本點(diǎn)發(fā)生的可能性相等。思考一:下面的隨機(jī)試驗(yàn)是不是古典概型?(1)一個(gè)班級(jí)中有18名男生、22名女生。采用抽簽的方式,從中隨機(jī)選擇一名學(xué)生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級(jí)中共有40名學(xué)生,從中選擇一名學(xué)生,即樣本點(diǎn)是有限個(gè);因?yàn)槭请S機(jī)選取的,所以選到每個(gè)學(xué)生的可能性都相等,因此這是一個(gè)古典概型。
本節(jié)通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會(huì)函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識(shí)到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡(jiǎn)單問題。課程目標(biāo)1.了解二分法的原理及其適用條件.2.掌握二分法的實(shí)施步驟.3.通過用二分法求方程的近似解,使學(xué)生體會(huì)函數(shù)零點(diǎn)與方程根之間的聯(lián)系,初步形成用函數(shù)觀點(diǎn)處理問題的意識(shí).數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點(diǎn)近似值的步驟;3.數(shù)學(xué)運(yùn)算:求函數(shù)零點(diǎn)近似值;4.數(shù)學(xué)建模:通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用.
《數(shù)學(xué)1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學(xué)生根據(jù)具體的函數(shù)圖象能夠借助計(jì)算機(jī)或信息技術(shù)工具計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會(huì)函數(shù)與方程之間的聯(lián)系;它既是本冊(cè)書中的重點(diǎn)內(nèi)容,又是對(duì)函數(shù)知識(shí)的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應(yīng)用,同時(shí)又為高中數(shù)學(xué)中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.通過具體實(shí)例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計(jì)算器用二分法求方程的近似解.3.會(huì)用二分法求一個(gè)函數(shù)在給定區(qū)間內(nèi)的零點(diǎn),從而求得方程的近似解. a.數(shù)學(xué)抽象:二分法的概念;b.邏輯推理:運(yùn)用二分法求近似解的原理;
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點(diǎn)B與直線a有且僅有一個(gè)平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個(gè)平面相交的直線和這個(gè)平面內(nèi)不經(jīng)過交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。