新知探究國(guó)際象棋起源于古代印度.相傳國(guó)王要獎(jiǎng)賞國(guó)際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請(qǐng)?jiān)谄灞P的第1個(gè)格子里放上1顆麥粒,第2個(gè)格子里放上2顆麥粒,第3個(gè)格子里放上4顆麥粒,依次類推,每個(gè)格子里放的麥粒都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子.請(qǐng)給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國(guó)王覺得這個(gè)要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國(guó)王是否能實(shí)現(xiàn)他的諾言.問題1:每個(gè)格子里放的麥粒數(shù)可以構(gòu)成一個(gè)數(shù)列,請(qǐng)判斷分析這個(gè)數(shù)列是否是等比數(shù)列?并寫出這個(gè)等比數(shù)列的通項(xiàng)公式.是等比數(shù)列,首項(xiàng)是1,公比是2,共64項(xiàng). 通項(xiàng)公式為〖a_n=2〗^(n-1)問題2:請(qǐng)將發(fā)明者的要求表述成數(shù)學(xué)問題.
本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對(duì)復(fù)數(shù)的拓展延伸,這樣更有利于我們對(duì)復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實(shí)際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實(shí)際問題;5.數(shù)學(xué)運(yùn)算:能夠正確運(yùn)用復(fù)數(shù)三角形式計(jì)算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習(xí)鞏固的過程,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:?jiǎn)栴}一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個(gè)要素來表示復(fù)數(shù)呢?如何表示?
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績(jī)存在差異,那么,如何度量這種差異呢?我們可以利用極差進(jìn)行度量。根據(jù)上述數(shù)據(jù)計(jì)算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績(jī)波動(dòng)范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個(gè)值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績(jī)很穩(wěn)定,那么大多數(shù)的射擊成績(jī)離平均成績(jī)不會(huì)太遠(yuǎn);相反,如果射擊的成績(jī)波動(dòng)幅度很大,那么大多數(shù)的射擊成績(jī)離平均成績(jī)會(huì)比較遠(yuǎn)。因此,我們可以通過這兩組射擊成績(jī)與它們的平均成績(jī)的“平均距離”來度量成績(jī)的波動(dòng)幅度。
可以通過下面的步驟計(jì)算一組n個(gè)數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計(jì)算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項(xiàng)數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項(xiàng)與第i+1項(xiàng)的平均數(shù)。我們?cè)诔踔袑W(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實(shí)際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個(gè)分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計(jì)中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計(jì)樹人中學(xué)高一年級(jí)女生第25,50,75百分位數(shù)。
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點(diǎn)B與直線a有且僅有一個(gè)平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個(gè)平面相交的直線和這個(gè)平面內(nèi)不經(jīng)過交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實(shí)形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側(cè)畫法觀察:矩形窗戶在陽光照射下留在地面上的影子是什么形狀?眺望遠(yuǎn)處成塊的農(nóng)田,矩形的農(nóng)田在我們眼里又是什么形狀呢?3. 給出斜二測(cè)具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時(shí),把他們畫成對(duì)應(yīng)的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長(zhǎng)度不變,平行于Y軸的線段,在直觀圖中長(zhǎng)度為原來一半。4.對(duì)斜二測(cè)方法進(jìn)行舉例:對(duì)于平面多邊形,我們常用斜二測(cè)畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測(cè)畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測(cè)畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對(duì)稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點(diǎn)N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測(cè)畫法(1)建兩個(gè)坐標(biāo)系,注意斜坐標(biāo)系夾角為45°或135°;(2)與坐標(biāo)軸平行或重合的線段保持平行或重合;(3)水平線段等長(zhǎng),豎直線段減半;(4)整理.簡(jiǎn)言之:“橫不變,豎減半,平行、重合不改變。”
1.圓柱、圓錐、圓臺(tái)的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺(tái)的表面積也是圍成它的各個(gè)面的面積和。利用圓柱、圓錐、圓臺(tái)的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺(tái)的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺(tái)的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個(gè)底面積是S,側(cè)面展開圖是一個(gè)正方體,那么這個(gè)圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長(zhǎng)為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),D為BC的中點(diǎn),H,G分別是BD,CD的中點(diǎn),若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺(tái)的體積對(duì)于柱體、錐體、臺(tái)體的體積公式的認(rèn)識(shí)(1)等底、等高的兩個(gè)柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實(shí)驗(yàn)得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
新知探究:向量的減法運(yùn)算定義問題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個(gè)向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個(gè)向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進(jìn)行:減去一個(gè)向量相當(dāng)于加上這個(gè)向量的相反向量。即新知探究(二):向量減法的作圖方法知識(shí)探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運(yùn)算? 問題八:非零共線向量怎樣做減法運(yùn)算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯(cuò)誤的打“×”)(1)兩個(gè)向量的差仍是一個(gè)向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運(yùn)算特點(diǎn),即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)數(shù);(2)對(duì)于三個(gè)以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個(gè)”函數(shù)的積、商的導(dǎo)數(shù)計(jì)算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進(jìn)化費(fèi)用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費(fèi)用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時(shí),所需進(jìn)化費(fèi)用的瞬時(shí)變化率:(1) 90% ;(2) 98%解:凈化費(fèi)用的瞬時(shí)變化率就是凈化費(fèi)用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
新知探究前面我們研究了兩類變化率問題:一類是物理學(xué)中的問題,涉及平均速度和瞬時(shí)速度;另一類是幾何學(xué)中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學(xué)科領(lǐng)域,但在解決問題時(shí),都采用了由“平均變化率”逼近“瞬時(shí)變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對(duì)于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時(shí), x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時(shí),平均變化率ΔyΔx無限趨近于一個(gè)確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個(gè)________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為__________),記作f ′(x0)或________,即
二、典例解析例4. 用 10 000元購(gòu)買某個(gè)理財(cái)產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計(jì)息,12個(gè)月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計(jì)息,存4個(gè)季度,則當(dāng)每季度利率為多少時(shí),按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計(jì)算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個(gè)月以后的本利和組成一個(gè)數(shù)列{a_n },則{a_n }是等比數(shù)列,首項(xiàng)a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個(gè)月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個(gè)季度以后的本利和組成一個(gè)數(shù)列{b_n },則{b_n }也是一個(gè)等比數(shù)列,首項(xiàng) b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
二、典例解析例10. 如圖,正方形ABCD 的邊長(zhǎng)為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個(gè)正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個(gè)正方形的面積之和;(2) 如果這個(gè)作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個(gè)等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個(gè)正方形的頂點(diǎn)分別是第k個(gè)正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個(gè)正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時(shí),無限趨近于所有正方形的面積和
1.判斷正誤(正確的打“√”,錯(cuò)誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線越“陡峭”. ( )(3)函數(shù)在某個(gè)區(qū)間上變化越快,函數(shù)在這個(gè)區(qū)間上導(dǎo)數(shù)的絕對(duì)值越大.( )(4)判斷函數(shù)單調(diào)性時(shí),在區(qū)間內(nèi)的個(gè)別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯(cuò)誤.(3)√ 函數(shù)在某個(gè)區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對(duì)值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
思考:洗衣機(jī)脫水時(shí)轉(zhuǎn)速高時(shí)容易甩干衣物,還是轉(zhuǎn)速低時(shí)容易甩干衣物?(2) 制作棉花糖的原理內(nèi)筒與洗衣機(jī)的脫水筒相似,里面加入白砂糖,加熱使糖熔化成糖汁。內(nèi)筒高速旋轉(zhuǎn),黏稠的糖汁就做離心運(yùn)動(dòng),從內(nèi)筒壁的小孔飛散出去,成為絲狀到達(dá)溫度較低的外筒,并迅速冷卻凝固,變得纖細(xì)雪白,像一團(tuán)團(tuán)棉花。5.離心現(xiàn)象的防止在水平公路上行駛的汽車,轉(zhuǎn)彎時(shí)所需的向心力是由車輪與路面的靜摩擦力提供的。如果轉(zhuǎn)彎時(shí)速度過大,所需向心力F大于最大靜摩擦力Fmax,汽車將做離心運(yùn)動(dòng)而造成交通事故。因此,在公路彎道處,車輛行駛不允許超過規(guī)定的速度。當(dāng)高速轉(zhuǎn)動(dòng)的砂輪或者飛輪內(nèi)部分子間相互作用力不足以提供所需向心力時(shí),離心運(yùn)動(dòng)就會(huì)使他們破裂,甚至釀成事故。
1.根據(jù)課程標(biāo)準(zhǔn)的要求。本單元的主題是“生活智慧與時(shí)代精神”,課程標(biāo)準(zhǔn)的要求主要是引導(dǎo)學(xué)生“思考日常生活富有哲理的事例,感悟哲學(xué)是世界觀的學(xué)問,能夠開啟人的智慧”,“解釋哲學(xué)的基本問題”,“分析實(shí)例,說明真正的哲學(xué)是時(shí)代精神的精華,明確馬克思主義哲學(xué)在人類認(rèn)識(shí)史上的重要地位”。這些問題,綜合起來就是使學(xué)生明確哲學(xué)與我們生活的關(guān)系,認(rèn)識(shí)學(xué)習(xí)哲學(xué)特別是馬克思主義哲學(xué)對(duì)我們?nèi)松淖饔?。因此,探究本問題有助于學(xué)生更好地理解本單元的內(nèi)容,完成本單元的教學(xué)目標(biāo)。2.根據(jù)學(xué)生的實(shí)際需要。學(xué)習(xí)哲學(xué)特別是馬克思主義哲學(xué),可以幫助學(xué)生樹立正確的世界觀、人生觀和價(jià)值觀,這也是學(xué)習(xí)哲學(xué)的主要目的。但在學(xué)生中還不同程度地存在著“哲學(xué)與我們的生活很遠(yuǎn)”、“哲學(xué)與我無關(guān)”、“哲學(xué)對(duì)我將來從事自然科學(xué)的研究沒有什么用處”等認(rèn)識(shí),這些都影響著學(xué)生對(duì)哲學(xué)學(xué)習(xí)的態(tài)度和哲學(xué)作用的發(fā)揮。設(shè)置本探究問題,有助于幫助學(xué)生澄清這些模糊認(rèn)識(shí)。
(三)合作探究、精講點(diǎn)撥。探究一:探究問題:如何看待排名一名高中生在談到“排名的二重性”時(shí)說:“我們既不能盲目地張揚(yáng)排名,也不能簡(jiǎn)單地否定排名。作為學(xué)生,如果用片面的觀點(diǎn)對(duì)待排名,排在前面沾沾自喜、驕傲自滿,排在后面灰心喪氣、一蹶不振,就會(huì)停滯不前,甚至倒退;如果通過排名了解自己的學(xué)習(xí)實(shí)力以及同別人的差距,做到知彼知己,揚(yáng)長(zhǎng)避短,就會(huì)出現(xiàn)先進(jìn)更先進(jìn)、后進(jìn)趕先進(jìn)的生動(dòng)局面?!眴栴}:(1)在排名問題上,人們的看法往往各不相同,這是為什么?(2)為什么我們應(yīng)看到排名的“二重性”?(3)聯(lián)系生活中類似的事例,談?wù)勆钆c哲學(xué)的關(guān)系。教師活動(dòng):指導(dǎo)學(xué)生閱讀以上的材料,并思考所提問題。學(xué)生活動(dòng):閱讀材料,分組討論問題,發(fā)表自己的觀點(diǎn),分析材料中包含的哲學(xué)道理。教師點(diǎn)評(píng):(1)在排名問題上,人們的看法不同,主要是因?yàn)槿藗兊乃季S方法不同。
一、教材分析本框題包括什么是哲學(xué)的基本問題、為什么思維和存在的關(guān)系問題是哲學(xué)的基本問題兩個(gè)目題。第一個(gè)問題:什么是哲學(xué)的基本問題。其邏輯順序是:什么是哲學(xué)的基本問題→哲學(xué)的基本問題所包含的兩方面的內(nèi)容→對(duì)哲學(xué)的基本問題第一方面內(nèi)容的不同回答是劃分唯物主義和唯心主義的標(biāo)準(zhǔn)→對(duì)哲學(xué)的基本問題第二方面內(nèi)容的不同回答是劃分可知論和不可知論的標(biāo)準(zhǔn)。第二個(gè)問題:為什么思維和存在的關(guān)系問題是哲學(xué)的基本問題。其 邏輯順序是:思維和存在的關(guān)系問題是人們?cè)诂F(xiàn)實(shí)生活和實(shí)踐活動(dòng)中遇到的和無法回避的基本問題→思維和存在的關(guān)系問題,是一切哲學(xué)都不能回避的、必須回答的問題→思維和存在的關(guān)系問題,貫穿于哲學(xué)發(fā)展的始終,對(duì)這個(gè)問題的不同回答決定著各種哲學(xué)的基本性質(zhì)和方向,決定著對(duì)其它哲學(xué)問題的回答。 二、教學(xué)目標(biāo)(一)知識(shí)目標(biāo)(1)識(shí)記哲學(xué)的基本問題(2)解釋哲學(xué)的基本問題
法律手段:制定和運(yùn)用經(jīng)濟(jì)法規(guī),包括經(jīng)濟(jì)立法、經(jīng)濟(jì)司法活動(dòng)等行政手段:采取強(qiáng)制性的行政命令、指示、規(guī)定等運(yùn)用舉例:我國(guó)一些地區(qū)遭遇突如其來的“禽流感”,禽類養(yǎng)殖戶損失慘重。國(guó)家采取了對(duì)疫區(qū)封鎖,對(duì)疫區(qū)的養(yǎng)殖戶進(jìn)行經(jīng)濟(jì)補(bǔ)貼,以及國(guó)家出資統(tǒng)一對(duì)疫區(qū)進(jìn)行消毒等措施進(jìn)行防治,并規(guī)定任何人不得將家禽帶出疫區(qū),違者追究法律責(zé)任。請(qǐng)結(jié)合材料說明在防治“禽流感”、發(fā)展禽類養(yǎng)殖的過程中,我國(guó)政府分別采取了哪些措施教師分析:對(duì)疫區(qū)養(yǎng)殖戶進(jìn)行經(jīng)濟(jì)補(bǔ)貼體現(xiàn)經(jīng)濟(jì)手段;對(duì)違反規(guī)定者追究法律責(zé)任,體現(xiàn)法律手段;對(duì)疫區(qū)進(jìn)行封鎖體現(xiàn)行政手段。(四)反思總結(jié),當(dāng)堂檢測(cè)。教師組織學(xué)生反思本節(jié)課的主要內(nèi)容(參照板書),進(jìn)行總結(jié)。設(shè)計(jì)意圖:對(duì)本節(jié)課的內(nèi)容進(jìn)行小結(jié),學(xué)生的概括過程也是檢驗(yàn)學(xué)生對(duì)本節(jié)課理解程度的過程。再次明確學(xué)生是學(xué)習(xí)的主體,并能夠發(fā)現(xiàn),問題解決問題。
有的學(xué)者還指出,要堅(jiān)持集體主義還必須將集體主義的價(jià)值精神與社會(huì)主義市場(chǎng)經(jīng)濟(jì)的要求結(jié)合起來,批判地繼承計(jì)劃經(jīng)濟(jì)時(shí)代倡導(dǎo)的集體主義,合理地對(duì)其進(jìn)行體系結(jié)構(gòu)的調(diào)整和內(nèi)容的更新,形成新的集體主義。與傳統(tǒng)的集體主義相比,這種新的集體主義應(yīng)具有如下兩個(gè)主要特點(diǎn)。其一,強(qiáng)調(diào)集體的出發(fā)點(diǎn)是為了維護(hù)集體成員的正當(dāng)個(gè)人利益。傳統(tǒng)的集體主義具有片面強(qiáng)調(diào)集體至上性、絕對(duì)性的弊端;新的集體主義必須依據(jù)社會(huì)主義市場(chǎng)經(jīng)濟(jì)的現(xiàn)實(shí)要求,將集體應(yīng)當(dāng)對(duì)個(gè)人承擔(dān)的義務(wù)加以科學(xué)的闡釋。真正的集體應(yīng)該維護(hù)各個(gè)集體成員的個(gè)人利益,實(shí)現(xiàn)組成集體的各個(gè)主體的自我價(jià)值。這種新型的集體主義是對(duì)社會(huì)主義市場(chǎng)經(jīng)濟(jì)條件下社會(huì)關(guān)系的真實(shí)反映,既與個(gè)人主義有本質(zhì)區(qū)別,也不同于傳統(tǒng)的集體主義。其二,要體現(xiàn)道德要求的先進(jìn)性與廣泛性的統(tǒng)一。
實(shí)驗(yàn)?zāi)繕?biāo):1、知道打點(diǎn)計(jì)時(shí)器的構(gòu)造和原理,學(xué)會(huì)使用打點(diǎn)計(jì)時(shí)器,能根據(jù)打出的紙帶計(jì)算打幾個(gè)點(diǎn)所用的時(shí)間,會(huì)計(jì)算紙帶的平均速度,能根據(jù)紙帶粗略測(cè)量紙帶的瞬時(shí)速度,認(rèn)識(shí)v-t圖象,并能根據(jù)v-t圖象判斷物體的運(yùn)動(dòng)情況。2、通過速度測(cè)量過程的體驗(yàn),領(lǐng)悟兩個(gè)方法:一是用圖象處理物理數(shù)據(jù)的方法;二是極限法或說無限趨近法,加強(qiáng)一個(gè)認(rèn)識(shí),實(shí)驗(yàn)是檢驗(yàn)理論的標(biāo)準(zhǔn)。實(shí)驗(yàn)器材:電源(220v電源或?qū)W生電源),打點(diǎn)計(jì)時(shí)器,紙帶,刻度尺(最好是塑料透明的),導(dǎo)線實(shí)驗(yàn)準(zhǔn)備:1、仔細(xì)觀察電磁打點(diǎn)計(jì)時(shí)器和電火花計(jì)時(shí)器,對(duì)照課本,比較它們的異同。2、兩類打點(diǎn)計(jì)時(shí)器的打點(diǎn)時(shí)間間隔是多少?3、分析紙帶時(shí),如何計(jì)算紙帶的平均速度。4、嚴(yán)格地說,瞬時(shí)速度我們引進(jìn)測(cè)量出來的,你知道用什么方法求出的速度可以代替某點(diǎn)的瞬時(shí)速度嗎?