探究活動二的安排,是要讓學(xué)生明確只靠實(shí)驗(yàn)得出的結(jié)論,可能會以點(diǎn)帶面,從而進(jìn)一步說明學(xué)習(xí)推理的必要性。并小結(jié)出:如果要判斷一個結(jié)論不正確只要舉一個反例就可以了。探究活動三的安排是說明只靠實(shí)驗(yàn)得出的結(jié)論也不可靠,必須經(jīng)過有根有據(jù)的推理才行?;顒咏涣鳎海?)在數(shù)學(xué)學(xué)習(xí)中,你用到過推理嗎?(2)在日常生活中,你用到過推理嗎?這是一座橋梁,把課堂引向推理的方法。例題的安排,可以讓學(xué)生學(xué)會簡單的推理方法,同時增強(qiáng)學(xué)生的學(xué)習(xí)興趣。課堂練習(xí):①游戲:蘋果在哪里?②判斷:是誰打破玻璃?把練習(xí)變成游戲的形式,也是為了增加課堂的趣味性,提高學(xué)生的學(xué)習(xí)興趣。課堂小結(jié):進(jìn)一步明確學(xué)習(xí)推理的必要性。課后作業(yè):①課本習(xí)題6.1:2,3。②預(yù)習(xí)下一節(jié):定義與命題
③如果某人本月繳所得稅19.2元,那么此人本月工資薪金是多少元?根據(jù)所給條件寫出簡單的一次函數(shù)表達(dá)式是本節(jié)課的重點(diǎn)加難點(diǎn),所以在解決這一問題時及時引導(dǎo)學(xué)生總結(jié)學(xué)習(xí)體會,教給學(xué)生掌握“從特殊到一般”的認(rèn)識規(guī)律中發(fā)現(xiàn)問題的方法。類比出一次函數(shù)關(guān)系式的一般式的求法,以此突破教學(xué)難點(diǎn)。在學(xué)習(xí)過程中,我巡視并予以個別指導(dǎo),關(guān)注學(xué)生的個體發(fā)展。經(jīng)學(xué)生分析:(1)當(dāng)月收入大于1600元而小于2100元時,y=0.05×(x-1600);(2)當(dāng)x=1760時,y=0.05×(1760-1600)=8(元);(3)設(shè)此人本月工資、薪金是x元,則19.2=0.05×(x-1600) X=1984五.教學(xué)效果課前:通過本節(jié)課的學(xué)習(xí),教學(xué)目標(biāo)應(yīng)該可以基本達(dá)成,學(xué)生能夠理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系,并能正確識別一次函數(shù)解析式,能根據(jù)所給條件寫出簡單的一次函數(shù)表達(dá)式,且通過本節(jié)課的學(xué)習(xí)學(xué)生的抽象思維能力,數(shù)學(xué)應(yīng)用能力都能有所提升,
引導(dǎo)學(xué)生回憶所學(xué)知識。通過這節(jié)課的學(xué)習(xí)你得到什么啟示和收獲?談?wù)勀愕母惺?目的:總結(jié)回顧學(xué)習(xí)內(nèi)容,有助于學(xué)生養(yǎng)成整理知識的習(xí)慣;有助于學(xué)生在剛剛理解了新知識的基礎(chǔ)上,及時把知識系統(tǒng)化、條理化。(四)作業(yè)布置加強(qiáng)“教、學(xué)”反思,進(jìn)一步提高“教與學(xué)”效果。四、說板書設(shè)計(jì)采用了如下板書,要點(diǎn)突出,簡明清晰。一次函數(shù)正比例函數(shù)圖像的畫法:確定兩點(diǎn)為(0,0)和(1,K)一次函數(shù)選擇的兩點(diǎn)為:(0,k)和(-b\k,0)五、說課后小結(jié)實(shí)踐證明,在教學(xué)中,充分利用教學(xué)方法的優(yōu)勢,為學(xué)生創(chuàng)造一個好的學(xué)習(xí)氛圍,來引導(dǎo)學(xué)生發(fā)現(xiàn)問題、分析問題從而解決問題。多媒體課件支撐著整個教學(xué)過程,令學(xué)生在一個生動有趣的課堂上,能愉快地接受知識
(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學(xué)生的識圖能力,可根據(jù)學(xué)生情況和上課情況適當(dāng)調(diào)整。說明:練習(xí)注意了問題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對同學(xué)的回答,教師給予點(diǎn)評,對回答問題暫時有困難的同學(xué),教師應(yīng)幫助他們樹立信心。第四環(huán)節(jié):課時小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運(yùn)用一次函數(shù)解決實(shí)際問題時,可以直接從函數(shù)圖象上獲取信息解決問題,當(dāng)然也可以設(shè)法得出各自對應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過計(jì)算解決問題。通過列出關(guān)系式解決問題時,一般首先判斷關(guān)系式的特征,如兩個變量之間是不是一次函數(shù)關(guān)系?當(dāng)確定是一次函數(shù)關(guān)系時,可求出函數(shù)解析式,并運(yùn)用一次函數(shù)的圖象和性質(zhì)進(jìn)一步求得我們所需要的結(jié)果.
方法總結(jié):(1)若被開方數(shù)中含有負(fù)因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡,使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡二次根式(后面學(xué)到).探究點(diǎn)三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗(yàn)被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設(shè)計(jì)二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經(jīng)歷從具體實(shí)例到一般規(guī)律的探究過程,運(yùn)用類比的方法,得出實(shí)數(shù)運(yùn)算律和運(yùn)算法則,使學(xué)生清楚新舊知識的區(qū)別和聯(lián)系,加深學(xué)生對運(yùn)算法則的理解,能否根據(jù)問題的特點(diǎn),選擇合理、簡便的算法,能否確認(rèn)結(jié)果的合理性等等.
屬于此類問題一般有以下三種情況①具體數(shù)字,此時化簡的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當(dāng)題目中給定的條件不能判定絕對值符號內(nèi)代數(shù)式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現(xiàn)錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數(shù)式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內(nèi)的代數(shù)式為零,求出對應(yīng)的“零點(diǎn)”,再用這些“零點(diǎn)”把數(shù)軸分成若干個區(qū)間,再在每個區(qū)間內(nèi)進(jìn)行化簡。
解:∵y=23x+a與y=-12x+b的圖象都過點(diǎn)A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點(diǎn)B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點(diǎn)C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點(diǎn)的坐標(biāo),即兩個一次函數(shù)的交點(diǎn)和它們分別與x軸、y軸交點(diǎn)的坐標(biāo).三、板書設(shè)計(jì)兩個一次函數(shù)的應(yīng)用實(shí)際生活中的問題幾何問題進(jìn)一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實(shí)際問題,在函數(shù)圖象信息獲取過程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實(shí)際問題的過程中,進(jìn)一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.
學(xué)習(xí)目標(biāo)1.掌握兩個一次函數(shù)圖像的應(yīng)用;(重點(diǎn))2.能利用函數(shù)圖象解決實(shí)際問題。(難點(diǎn))教學(xué)過程一、情景導(dǎo)入在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關(guān)系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點(diǎn)燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學(xué)完本解知識,相信你能很快得出答案。二、 合作探究探究點(diǎn)一:兩個一次函數(shù)的應(yīng)用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數(shù)表達(dá)式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補(bǔ),兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯角相等,同旁內(nèi)角互補(bǔ))來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設(shè)計(jì)平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
四個不同類型的問題由淺入深,學(xué)生能從不同角度掌握求一次函數(shù)的方法.對于問題4,教師可引導(dǎo)學(xué)生分析,并教學(xué)生要學(xué)會畫圖,利用圖象分析問題,體會數(shù)形結(jié)合方法的重要性.學(xué)生若出現(xiàn)解題格式不規(guī)范的情況,教師應(yīng)糾正并給予示范,訓(xùn)練學(xué)生規(guī)范答題的習(xí)慣.第五環(huán)節(jié)課時小結(jié)內(nèi)容:總結(jié)本課知識與方法1.本節(jié)課主要學(xué)習(xí)了怎樣確定一次函數(shù)的表達(dá)式,在確定一次函數(shù)的表達(dá)式時可以用待定系數(shù)法,即先設(shè)出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設(shè)函數(shù)表達(dá)式;(2)根據(jù)已知條件列出有關(guān)k,b的方程;(3)解方程,求k,b;4.把k,b代回表達(dá)式中,寫出表達(dá)式.2.本節(jié)課用到的主要的數(shù)學(xué)思想方法:數(shù)形結(jié)合、方程的思想.目的:引導(dǎo)學(xué)生小結(jié)本課的知識及數(shù)學(xué)方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習(xí)題4.5:1,2,3,4目的:進(jìn)一步鞏固當(dāng)天所學(xué)知識。教師也可根據(jù)學(xué)生情況適當(dāng)增減,但難度不應(yīng)過大.
第一環(huán)節(jié):情境引入內(nèi)容:(一) 情境1實(shí)物投影,并呈現(xiàn)問題:在一望無際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個.”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識幫助小馬解決問題呢?請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言).教師注意引導(dǎo)學(xué)生設(shè)兩個未知數(shù),從而得出二元一次方程.這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程 ,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍, 得方程: .
方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點(diǎn)二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因?yàn)锳E=BE,所以S△ABE=12AE·BE=12AE2.又因?yàn)锳E2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因?yàn)锳C2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時,要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關(guān)系.
目的:課后作業(yè)設(shè)計(jì)包括了兩個層面:作業(yè)1是為了鞏固基礎(chǔ)知識而設(shè)計(jì);作業(yè)2是為了擴(kuò)展學(xué)生的知識面;拓廣知識,增加學(xué)生對數(shù)學(xué)問題本質(zhì)的思考而設(shè)計(jì),通過此題可讓學(xué)生進(jìn)一步運(yùn)用三元一次方程組解決問題.教學(xué)設(shè)計(jì)反思1.本節(jié)課的內(nèi)容屬于選修學(xué)習(xí)的內(nèi)容,主要突出對數(shù)學(xué)興趣濃厚、學(xué)有余力的同學(xué)進(jìn)一步探究和拓展使用,在數(shù)學(xué)方法和思想方面需重點(diǎn)引導(dǎo),通過引導(dǎo),使學(xué)生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導(dǎo),并且比較各種解題方法之間的優(yōu)劣,總結(jié)出解多元方程的基本方法.2.作為選修課,在內(nèi)容上要讓學(xué)生理解三元一次方程組概念的同時,要讓學(xué)生理解為什么要用三元一次方程組甚至多元方程組去求解實(shí)際問題的必要性,從而掌握本堂課的基礎(chǔ)知識.在教學(xué)的過程中,要讓學(xué)生充分理解對復(fù)雜的實(shí)際問題方程中元越多,等量關(guān)系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點(diǎn)和缺點(diǎn),有關(guān)這一方面的題目要讓學(xué)生充分討論、交流、合作,其理解才會深刻.
證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∵∠DEC是△ABE的一個外角∴∠DEC=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動目的:讓學(xué)生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學(xué)生的證明思路,特別是不等關(guān)系的證明題,因?yàn)閷W(xué)生接觸較少,因此更需要加強(qiáng)練習(xí).注意事項(xiàng):學(xué)生對于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學(xué)生找到一個過渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。
意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學(xué)生的愛國熱情;(2)學(xué)生加強(qiáng)了對數(shù)學(xué)史的了解,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣;(3)通過讓部分學(xué)生搜集材料,展示材料,既讓學(xué)生得到充分的鍛煉,同時也活躍了課堂氣氛.效果:學(xué)生熱情高漲,對勾股定理的歷史充滿了濃厚的興趣,同時也為中國古代數(shù)學(xué)的成就感到自豪.也有同學(xué)提出:當(dāng)代中國數(shù)學(xué)成就不夠強(qiáng),還應(yīng)發(fā)奮努力.有同學(xué)能意識這一點(diǎn),這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問:通過這節(jié)課的學(xué)習(xí),你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識要點(diǎn),數(shù)形結(jié)合的思想方法;(2)教師了解學(xué)生對本節(jié)課的感受并進(jìn)行總結(jié);(3)培養(yǎng)學(xué)生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動學(xué)生學(xué)習(xí)的積極性,所以學(xué)生談的收獲很多,包括利用拼圖驗(yàn)證勾股定理中蘊(yùn)含的數(shù)形結(jié)合思想,學(xué)生對勾股定理的歷史的感悟及對勾股定理應(yīng)用的認(rèn)識等等.
解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關(guān)系,可求得∠AOB與∠COD的度數(shù).通過計(jì)算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結(jié):檢驗(yàn)數(shù)學(xué)結(jié)論具體經(jīng)歷的過程是:觀察、度量、實(shí)驗(yàn)→猜想歸納→結(jié)論→推理→正確結(jié)論.三、板書設(shè)計(jì)為什么,要證明)推理的意義:數(shù)學(xué)結(jié)論必須經(jīng)過嚴(yán)格的論證檢驗(yàn)數(shù)學(xué)結(jié)論的常用方法實(shí)驗(yàn)驗(yàn)證舉出反例推理證明經(jīng)歷觀察、驗(yàn)證、歸納等過程,使學(xué)生對由這些方法得到的結(jié)論產(chǎn)生懷疑,以此激發(fā)學(xué)生的好奇心,從而認(rèn)識證明的必要性,培養(yǎng)學(xué)生的推理意識,了解檢驗(yàn)數(shù)學(xué)結(jié)論的常用方法:實(shí)驗(yàn)驗(yàn)證、舉出反例、推理論證等.
第三環(huán)節(jié):課堂小結(jié)活動內(nèi)容:1. 通過前面幾個題,你對列方程組解決實(shí)際問題的方法和步驟掌握的怎樣?2. 這里面應(yīng)該注意的是什么?關(guān)鍵是什么?3. 通過今天的學(xué)習(xí),你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實(shí)際問題的主要步驟是什么?說明:通過以上四個問題,學(xué)生基本上掌握了列二元一次方程組解決實(shí)際問題的方法和步驟,可啟發(fā)學(xué)生說出自己的心得體會及疑問.活動意圖:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識要點(diǎn)及數(shù)學(xué)方法,使知識系統(tǒng)化.說明:還可以建議有條件的學(xué)生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學(xué)還可互相編題考察對方;還可以設(shè)置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學(xué)生的學(xué)習(xí)興趣和信心。
探究點(diǎn)三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點(diǎn)在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關(guān)系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減?。?、板書設(shè)計(jì)1.函數(shù)與圖象之間是一一對應(yīng)的關(guān)系;2.作一個函數(shù)的圖象的一般步驟:列表,描點(diǎn),連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過原點(diǎn)的直線.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點(diǎn)、連線.已知函數(shù)的表達(dá)式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識和能力.理解一次函數(shù)的表達(dá)式與圖象之間的一一對應(yīng)關(guān)系.
三、品讀,感悟詞人情懷1.品讀“醉”意設(shè)問1:再次默讀詞作。想一想:這首詞是圍繞哪一個字來寫的?從哪些地方可以看出來?預(yù)設(shè) “醉”字。表現(xiàn):沉醉不知?dú)w路;誤入藕花深處。設(shè)問2:詞人因何而“醉”?預(yù)設(shè) 因美酒和美景而“醉”。設(shè)問3:除了美景、美酒,還有什么會讓李清照“醉”?預(yù)設(shè) 還有詞人和自己的伙伴在一起的那種美好情誼,對年輕時那些美好生活的回憶,都讓她深深陶醉。師小結(jié):李清照的“醉”既是酒醉更是陶醉。其實(shí)不管“興”也好,“記”也罷,“醉”也好,還是“誤”也好,作者是“字字如金”。因?yàn)椤芭d”所以“醉”,因?yàn)椤白怼彼浴罢`”,因?yàn)椤白怼?,所以常常記得?.品字悟情設(shè)問1:如何理解兩個“爭渡”表達(dá)出的情感?預(yù)設(shè) 兩個“爭渡”,表現(xiàn)了主人公急于從迷途中找尋出路的焦灼心情。正是由于“爭渡”,所以又“驚起一灘鷗鷺”,把停棲在沙洲上的水鳥都嚇飛了。至此,詞戛然而止,言盡而意未盡,耐人尋味。
預(yù)設(shè) 反映了海邊農(nóng)村殘破、荒涼的景象,表現(xiàn)了作者對下層人民的深切同情?!驹O(shè)計(jì)意圖】“三分詩七分讀”,學(xué)生反復(fù)誦讀,與文本對話,感知詩歌的韻律和節(jié)奏,讀出情味,為理解詩歌情感做鋪墊。三、品讀詩歌,含英咀華師:請同學(xué)們仔細(xì)品讀這首詩,思考以下問題。設(shè)問1:曹植在海邊看到了怎樣的情景?預(yù)設(shè) 民不聊生,破敗荒涼。其中,“寄身”三句,從生活環(huán)境、生活艱難和居住環(huán)境三個方面實(shí)寫“邊海民”的悲慘生活。海民寄身于“草野”,過著非人的生活,生吞活剝,巢息穴居,所以說“象禽獸”;他們不敢出來,怕被人發(fā)現(xiàn)、抓走,每天就鉆在山林里邊,所以說“行止依林阻”。一個“依”字把難民們的實(shí)際活動和恐懼心理都表現(xiàn)出來了?!昂孟栉矣睢币痪渫ㄟ^對狐貍、兔子的描寫,側(cè)面描繪出海邊貧民家庭條件的惡劣以及家園的破敗。全詩正面描寫與側(cè)面烘托相結(jié)合,使海邊貧民悲慘的生活圖景躍然紙上。設(shè)問2:詩中哪一句最能體現(xiàn)作者的情感?