方法總結(jié):要認(rèn)真觀察圖象,結(jié)合題意,弄清各點(diǎn)所表示的意義.探究點(diǎn)二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過(guò)點(diǎn)(0,1)可得b=1,再將點(diǎn)(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達(dá)式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書(shū)設(shè)計(jì)一次函數(shù)的應(yīng)用單個(gè)一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過(guò)程由淺入深,并利用了豐富的實(shí)際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進(jìn),逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個(gè)體差異,使每個(gè)學(xué)生都學(xué)有所獲.
解:∵y=23x+a與y=-12x+b的圖象都過(guò)點(diǎn)A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個(gè)一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點(diǎn)B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點(diǎn)C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類(lèi)題要先求得頂點(diǎn)的坐標(biāo),即兩個(gè)一次函數(shù)的交點(diǎn)和它們分別與x軸、y軸交點(diǎn)的坐標(biāo).三、板書(shū)設(shè)計(jì)兩個(gè)一次函數(shù)的應(yīng)用實(shí)際生活中的問(wèn)題幾何問(wèn)題進(jìn)一步訓(xùn)練學(xué)生的識(shí)圖能力,能通過(guò)函數(shù)圖象獲取信息,解決簡(jiǎn)單的實(shí)際問(wèn)題,在函數(shù)圖象信息獲取過(guò)程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí),發(fā)展形象思維.在解決實(shí)際問(wèn)題的過(guò)程中,進(jìn)一步發(fā)展學(xué)生的分析問(wèn)題、解決問(wèn)題的能力和數(shù)學(xué)應(yīng)用意識(shí).
學(xué)習(xí)目標(biāo)1.掌握兩個(gè)一次函數(shù)圖像的應(yīng)用;(重點(diǎn))2.能利用函數(shù)圖象解決實(shí)際問(wèn)題。(難點(diǎn))教學(xué)過(guò)程一、情景導(dǎo)入在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(厘米)與燃燒時(shí)間x(小時(shí))之間的關(guān)系如圖所示.請(qǐng)你根據(jù)圖象所提供的信息回答下列問(wèn)題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點(diǎn)燃到燃盡所用的時(shí)間分別是 小時(shí)、 小時(shí).你會(huì)解答上面的問(wèn)題嗎?學(xué)完本解知識(shí),相信你能很快得出答案。二、 合作探究探究點(diǎn)一:兩個(gè)一次函數(shù)的應(yīng)用(2015?日照模擬)自來(lái)水公司有甲、乙兩個(gè)蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個(gè)蓄水池中水的深度y(米)與注水時(shí)間x(時(shí))之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問(wèn)題.(1)分別求出甲、乙兩個(gè)蓄水池中水的深度y與注水時(shí)間x之間的函數(shù)表達(dá)式;(2)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水池水的深度相同;(3)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水的池蓄水量相同;
解:設(shè)正比例函數(shù)的表達(dá)式為y1=k1x,一次函數(shù)的表達(dá)式為y2=k2x+b.∵點(diǎn)A(4,3)是它們的交點(diǎn),∴代入上述表達(dá)式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達(dá)式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點(diǎn)B在y軸的負(fù)半軸上,∴B點(diǎn)的坐標(biāo)為(0,-52).又∵點(diǎn)B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達(dá)式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達(dá)式的方法:從圖象上選取兩個(gè)已知點(diǎn)的坐標(biāo),然后運(yùn)用待定系數(shù)法將兩點(diǎn)的橫、縱坐標(biāo)代入所設(shè)表達(dá)式中求出待定系數(shù),從而求出函數(shù)的表達(dá)式.【類(lèi)型三】 根據(jù)實(shí)際問(wèn)題確定一次函數(shù)的表達(dá)式某商店售貨時(shí),在進(jìn)價(jià)的基礎(chǔ)上加一定利潤(rùn),其數(shù)量x與售價(jià)y的關(guān)系如下表所示,請(qǐng)你根據(jù)表中所提供的信息,列出售價(jià)y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時(shí)的售價(jià).
四個(gè)不同類(lèi)型的問(wèn)題由淺入深,學(xué)生能從不同角度掌握求一次函數(shù)的方法.對(duì)于問(wèn)題4,教師可引導(dǎo)學(xué)生分析,并教學(xué)生要學(xué)會(huì)畫(huà)圖,利用圖象分析問(wèn)題,體會(huì)數(shù)形結(jié)合方法的重要性.學(xué)生若出現(xiàn)解題格式不規(guī)范的情況,教師應(yīng)糾正并給予示范,訓(xùn)練學(xué)生規(guī)范答題的習(xí)慣.第五環(huán)節(jié)課時(shí)小結(jié)內(nèi)容:總結(jié)本課知識(shí)與方法1.本節(jié)課主要學(xué)習(xí)了怎樣確定一次函數(shù)的表達(dá)式,在確定一次函數(shù)的表達(dá)式時(shí)可以用待定系數(shù)法,即先設(shè)出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問(wèn)題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設(shè)函數(shù)表達(dá)式;(2)根據(jù)已知條件列出有關(guān)k,b的方程;(3)解方程,求k,b;4.把k,b代回表達(dá)式中,寫(xiě)出表達(dá)式.2.本節(jié)課用到的主要的數(shù)學(xué)思想方法:數(shù)形結(jié)合、方程的思想.目的:引導(dǎo)學(xué)生小結(jié)本課的知識(shí)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習(xí)題4.5:1,2,3,4目的:進(jìn)一步鞏固當(dāng)天所學(xué)知識(shí)。教師也可根據(jù)學(xué)生情況適當(dāng)增減,但難度不應(yīng)過(guò)大.
方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書(shū)設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問(wèn)題確定其解的大致范圍;(2)再通過(guò)列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過(guò)程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
(1)x可能小于0嗎?說(shuō)說(shuō)你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿(mǎn)足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁(yè)隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)
首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書(shū)設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問(wèn)題確定其解的大致范圍;(2)再通過(guò)列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過(guò)程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
(1)一個(gè)快落山的太陽(yáng),跟大家講的,更多的是自己一生奮斗過(guò)來(lái)的體會(huì)。指61歲的老人。(2)加入人家說(shuō)我是權(quán)威,也許還馬馬虎虎。作者自謙的說(shuō)法,指成績(jī)還過(guò)得去。(3)明明是一個(gè)過(guò)去時(shí)態(tài),大家誤認(rèn)為是現(xiàn)在時(shí)態(tài)。指作者認(rèn)為自己不適合再做權(quán)威了。(4)扶植年輕人我覺(jué)得是一種歷史的潮流,當(dāng)然我們要?jiǎng)?chuàng)造條件,就是把他們推到需要刺激的風(fēng)口浪尖上。比喻重要的崗位或市場(chǎng)的前沿。【感悟精彩句子】1.所以我知道自己是一個(gè)下午四五點(diǎn)鐘的太陽(yáng)。各位呢,上午八九點(diǎn)鐘的太陽(yáng),這是本科生;碩士生呢,九十點(diǎn)鐘的太陽(yáng);博士生呢,十點(diǎn)十一點(diǎn)鐘的太陽(yáng)。比喻,拉近了與聽(tīng)眾的距離,倍感親切、期望和鼓舞。2.所以1992年前電視臺(tái)采訪我,我基本上都拒絕了。透過(guò)細(xì)節(jié),體現(xiàn)了堅(jiān)持不懈的科研精神。
精讀課文,理解積累 1、同學(xué)們的字記的很好,課文也一定能讀出感情來(lái)?,F(xiàn)在就請(qǐng)同學(xué)們帶著自己的理解和感受,有感情地讀一遍課文,并自己喜歡的一段精讀?! ?、討論交流,指導(dǎo)朗讀 調(diào)整方案: 方案一:通過(guò)讀文你知道了什么?(這一問(wèn)題較開(kāi)放,如果學(xué)生已從整體上感知課文內(nèi)容,即可進(jìn)入下一環(huán)節(jié)。如果學(xué)生回答只停留在零散的詞句上,就按方案二教學(xué)。) 方案二:小燕子、麻雀和黃鶯它們分別認(rèn)為春雨是什么色的?他們?yōu)槭裁催@么認(rèn)為?(板貼寫(xiě)有字的小寫(xiě)圖片和對(duì)應(yīng)的顏色) 3、小組內(nèi)討論:a.如果分角色朗讀的話,該怎樣讀爭(zhēng)論的語(yǔ)法,朗讀好“不對(duì)”“不對(duì),不對(duì)”“你們瞧”b.怎樣表現(xiàn)春雨小鳥(niǎo)和大自然?! ?、根據(jù)自己的理解感受小組內(nèi)分角色讀、表演讀?! ?、請(qǐng)一組同學(xué)配樂(lè)表演讀,學(xué)生評(píng)價(jià) 6、同學(xué)們春雨到底是什么顏色的呢?把你的想法說(shuō)一說(shuō),畫(huà)一畫(huà)(自選粉筆板畫(huà)春雨) 7、指導(dǎo)積累。同學(xué)們讀得真有感情,現(xiàn)在請(qǐng)把你喜歡的詞句畫(huà)下來(lái)。
教師姓名 課程名稱(chēng)數(shù)學(xué)班 級(jí) 授課日期 授課順序 章節(jié)名稱(chēng)§2.3 一元二次不等式教 學(xué) 目 標(biāo)知識(shí)目標(biāo):1、理解一元二次不等式和一元二次方程以及二次函數(shù)之間的關(guān)系 2、理解一元二次不等式的解集的含義 3、一元二次不等式的解集與二次函數(shù)圖像的對(duì)應(yīng) 技能目標(biāo):1、會(huì)解一元二次方程 2、會(huì)畫(huà)二次函數(shù)的圖像 3、能結(jié)合圖像寫(xiě)出一元二次不等式的解集 情感目標(biāo):體會(huì)知識(shí)之間的相互關(guān)聯(lián)性,體會(huì)數(shù)形結(jié)合思想的重要性教學(xué) 重點(diǎn) 和 難點(diǎn)重點(diǎn): 1、一元二次不等式的解集的含義 2、一元二次不等式與二次函數(shù)的關(guān)系 難點(diǎn): 1、將一元二次不等式和一元二次方程以及二次函數(shù)聯(lián)系起來(lái) 2、在函數(shù)圖像上正確的找到解集對(duì)應(yīng)的部分教 學(xué) 資 源《數(shù)學(xué)》(第一冊(cè)) 多媒體課件評(píng) 估 反 饋課堂提問(wèn) 課堂練習(xí)作 業(yè)習(xí)題2.3課后記本節(jié)課內(nèi)容是比較重要的,是一元二次方程、一元二次函數(shù)、一元二次不等式的結(jié)合,相關(guān)知識(shí)點(diǎn)融會(huì)貫通,數(shù)形結(jié)合的思想方法在這有很好的運(yùn)用。三種情況只要講清楚一種,另外兩種可由學(xué)生自行推出結(jié)論。
【教學(xué)目標(biāo)】1、了解方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、掌握一元二次不等式的圖像解法;【教學(xué)重點(diǎn)】1、 方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、 一元二次不等式的解法?!窘虒W(xué)難點(diǎn)】 一元二次不等式的解法?!窘虒W(xué)設(shè)計(jì)】 1、從復(fù)習(xí)一次函數(shù)圖像、一元一次方程、一元一次不等式的聯(lián)系入手;2、類(lèi)比觀察一元二次函數(shù)圖像,得到一元二次不等式的圖像解法;3、加強(qiáng)知識(shí)的鞏固與練習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力?!菊n時(shí)安排】 2課時(shí)(90分鐘)【教學(xué)過(guò)程】一、一元二次不等式的解法² 復(fù)習(xí)回顧1、根據(jù)初中所學(xué)知識(shí),填寫(xiě)下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個(gè)根有 1 個(gè)根有 0 個(gè)根2、觀察二次函數(shù)y=x²-5x+6的圖像,回答下列問(wèn)題:(1)當(dāng)y=0時(shí),x取什么值?(2)二次函數(shù)y=x²-5x+6的圖像與x軸交點(diǎn)的坐標(biāo)是什么?(3)當(dāng)y<0時(shí),x的取值范圍是什么?總結(jié):由此看到,通過(guò)對(duì)函數(shù)y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集
復(fù)習(xí)內(nèi)容說(shuō)明: 本單元的復(fù)習(xí)包括本冊(cè)所學(xué)的主要內(nèi)容:20以?xún)?nèi)的數(shù), 20以?xún)?nèi)的加法和10以?xún)?nèi)的加減法,認(rèn)識(shí)圖形,認(rèn)識(shí)鐘表,用數(shù)學(xué)。復(fù)習(xí)目標(biāo): 1.通過(guò)復(fù)習(xí)20以?xún)?nèi)數(shù)的讀寫(xiě)、數(shù)序、大小、組成和序數(shù)的含義,加深同學(xué)對(duì)數(shù)概念的理解。使同學(xué)進(jìn)一步明確加減的含義。 2.熟練口算10以?xún)?nèi)的加減法,正確較迅速地口算20以?xún)?nèi)的進(jìn)位加法。
二、教材分析本節(jié)課是讓學(xué)生結(jié)合具體情境,理解路程、時(shí)間與速度之間的關(guān)系。為此,教材安排了一個(gè)情境:比一比兩輛車(chē)誰(shuí)跑得快一些?從而讓學(xué)生歸納出路程、時(shí)間與速度三個(gè)數(shù)量,進(jìn)而歸納出速度=路程÷時(shí)間,再結(jié)合試一試兩題,讓學(xué)生得出:路程=速度×時(shí)間,時(shí)間=路程÷速度,進(jìn)一步理解路程、速度、時(shí)間三者之間的關(guān)系。因此,理解路程、時(shí)間與速度之間的關(guān)系是本節(jié)課的重點(diǎn),難點(diǎn)是速度的單位。學(xué)習(xí)了這節(jié)課,學(xué)生可以解決生活中的一些實(shí)際問(wèn)題,并且可以合理地安排時(shí)間,提高效率。三、學(xué)情分析學(xué)生對(duì)于路程、時(shí)間與速度的關(guān)系一定有所了解,但他們雖然知道三者之間的數(shù)量關(guān)系式,卻并不十分了解為什么有這樣的關(guān)系。因此,在課上應(yīng)遵循“問(wèn)題情境---建立模式---解釋?xiě)?yīng)用”的基本敘述模式,為學(xué)生自主參與、探究和交流提供時(shí)間和空間。四、教學(xué)目標(biāo)
(一)教學(xué)內(nèi)容:我說(shuō)課的內(nèi)容是第5單元中內(nèi)容,(二)教材地位:加法是數(shù)學(xué)中最基本的運(yùn)算之一。從教材的縱向聯(lián)系來(lái)看,幾年前已學(xué)過(guò)整數(shù)加法和小數(shù)加法,以及加法的運(yùn)算定律,知道它不僅適用于整數(shù)加法,而且也適用于小數(shù)加法。那么是否也適用于現(xiàn)在所學(xué)習(xí)的分?jǐn)?shù)加法呢?這就是我們這節(jié)課要研究的問(wèn)題,當(dāng)然,結(jié)果是肯定的。通過(guò)本課的學(xué)習(xí),將整數(shù)加法的運(yùn)算定律推廣到分?jǐn)?shù)加法,可使學(xué)生對(duì)加法的認(rèn)識(shí)從感性上升到理性。為后面學(xué)習(xí)分?jǐn)?shù)加法的簡(jiǎn)便計(jì)算打好基礎(chǔ),同時(shí)也為學(xué)習(xí)小數(shù)、分?jǐn)?shù)混合運(yùn)算奠定基礎(chǔ)。其次,將整數(shù)加法的運(yùn)算定律推廣到分?jǐn)?shù)加法,也拓展了加法運(yùn)算定律的使用范圍,豐富其內(nèi)涵。而且加法運(yùn)算定律字母表示形式,為以后代數(shù)知識(shí)的學(xué)習(xí)奠定了初步基礎(chǔ)。
比較2和3兩個(gè)算式:這兩個(gè)算式的不同?請(qǐng)學(xué)生具體解釋一下270-180為什么要用括號(hào)?讓學(xué)生體會(huì)到解決問(wèn)題的思路不同,解決方法也不同,計(jì)算的步數(shù)也是不同的。(再請(qǐng)學(xué)生分別說(shuō)說(shuō)這兩個(gè)算式的計(jì)算過(guò)程,每一步的含義。)小結(jié):括號(hào)是用來(lái)改變運(yùn)算順序的。當(dāng)你列出的綜合算式的運(yùn)算順序與實(shí)際需要的運(yùn)算順序不相符時(shí),就用括號(hào)來(lái)改變運(yùn)算順序。比如(擦去(270-180)÷30中的括號(hào))這樣的算式中先算什么?按照混合運(yùn)算順序的規(guī)定是不能先算270-180的,要想先算這部分就要用括號(hào)把這一步括起來(lái)。這個(gè)算式才正確表示了我們解決問(wèn)題的方法步驟。(設(shè)計(jì)意圖:在這個(gè)環(huán)節(jié)中,在自主探索的基礎(chǔ)上,教師給學(xué)生提供充分表達(dá)自己見(jiàn)解的機(jī)會(huì),闡述自己得出的結(jié)論探究過(guò)程及疑難問(wèn)題。然后根據(jù)學(xué)生反饋的信息,組織、引導(dǎo)學(xué)生通過(guò)個(gè)體發(fā)言、小組討論、辯論等多種形式進(jìn)行辨析評(píng)價(jià),使學(xué)生的認(rèn)知結(jié)構(gòu)更加穩(wěn)定和完善。)
一、說(shuō)教材該內(nèi)容是人教版小學(xué)數(shù)學(xué)四年級(jí)第八冊(cè)第四單元的最后一個(gè)內(nèi)容,是在學(xué)生已經(jīng)掌握了把整萬(wàn)、整億數(shù)改寫(xiě)成用萬(wàn)或億作單位的數(shù)的基礎(chǔ)上進(jìn)行教學(xué)的。通過(guò)本節(jié)課的學(xué)習(xí),要使學(xué)生能通過(guò)獨(dú)立思考、合作交流,掌握把大數(shù)目改寫(xiě)成用“萬(wàn)”或“億”作單位的數(shù)的方法,為以后能準(zhǔn)確、恰當(dāng)?shù)剡\(yùn)用數(shù)目描述生活現(xiàn)象打下良好的基礎(chǔ)。根據(jù)本課的內(nèi)容和學(xué)生已有的知識(shí)和心理特征,我制訂如下教學(xué)目標(biāo):1、掌握把較大數(shù)改寫(xiě)成用“萬(wàn)”或“億”作單位的數(shù)的方法,并能根據(jù)要求保留一定的小數(shù)位數(shù)。2、經(jīng)歷將一個(gè)數(shù)改寫(xiě)成用“萬(wàn)”或“億”作單位的數(shù)的過(guò)程,體驗(yàn)數(shù)據(jù)記法的多樣性。3、感受數(shù)學(xué)知識(shí)的應(yīng)用性。理解和掌握把較大的數(shù)改寫(xiě)成用“萬(wàn)”或“億”作單位的小數(shù)的方法是本課的教學(xué)重點(diǎn)。位數(shù)不夠用0補(bǔ)足是本節(jié)課的難點(diǎn)。
二、以人為本,說(shuō)策略?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》指出:“數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實(shí)際,從學(xué)生的生活經(jīng)驗(yàn)和已有的知識(shí)出發(fā)……”因此,結(jié)合本課教材特點(diǎn)、學(xué)生實(shí)際情況,我采取小組合作學(xué)習(xí),引導(dǎo)學(xué)生應(yīng)用學(xué)過(guò)的分?jǐn)?shù)、小數(shù)互化的知識(shí)進(jìn)行遷移、類(lèi)推,學(xué)習(xí)新知識(shí)。同時(shí),讓學(xué)生在嘗試探究的積極活動(dòng)中獲取新知,發(fā)展能力。三、以探為主,說(shuō)流程。課堂教學(xué)是學(xué)生數(shù)學(xué)知識(shí)的獲得、技能技巧的形成、智力、能力的發(fā)展以及思想品德的養(yǎng)成的主要途徑。為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過(guò)程進(jìn)行了系統(tǒng)地規(guī)劃,遵循目標(biāo)性、整體性、啟發(fā)性、主體性等一系列原則進(jìn)行教學(xué)設(shè)計(jì)。設(shè)計(jì)了以下幾個(gè)主要的教學(xué)程序:(一)設(shè)疑激趣,引入課題?!芭d趣是最好的老師”,為了激發(fā)學(xué)生的學(xué)習(xí)興趣,課一開(kāi)始,我設(shè)計(jì)了一個(gè)童話故事,在故事中設(shè)計(jì)了幫助主人公比較2/5、42%、0.45的問(wèn)題,然后引出課題。
師:這是一種較為簡(jiǎn)便、應(yīng)用廣泛的方法,但有時(shí)候也要具體問(wèn)題具體分析,做題時(shí)要合理靈活地選擇計(jì)算方法?!堆芯繉W(xué)生如何學(xué)比研究教師如何教更重要。學(xué)生對(duì)新知識(shí)的學(xué)習(xí)必須以已有的知識(shí)和學(xué)習(xí)經(jīng)驗(yàn)作為基礎(chǔ),因此正確分析學(xué)生的知識(shí)基礎(chǔ)和學(xué)習(xí)經(jīng)驗(yàn)就顯得格外重要。我認(rèn)為分?jǐn)?shù)除以整數(shù)的教學(xué)基礎(chǔ)在于以下幾點(diǎn):分?jǐn)?shù)與小數(shù)的轉(zhuǎn)化;分?jǐn)?shù)的意義;分?jǐn)?shù)乘法的意義;倒數(shù)的知識(shí);商不變的性質(zhì)等。這些知識(shí)在以前的學(xué)習(xí)中,學(xué)都有了足夠的掌握。有了上面的分析基礎(chǔ),我覺(jué)得把研究新知識(shí)的權(quán)力教給學(xué)生,是完全可以的?!?、質(zhì)疑與反思。師:對(duì)于這些方法,盡管大家的思維角度不盡相同,但是基本的想法是相同的,想一想我們是怎樣解決問(wèn)題的?生:用學(xué)過(guò)的倒數(shù)、商不變的性質(zhì)解決的。師:對(duì)。用一句話概括就是運(yùn)用舊知識(shí)解決新新問(wèn)題。這是一種很重要的學(xué)習(xí)方法。5、實(shí)踐體驗(yàn)練習(xí)鞏固。
一.說(shuō)教材。我說(shuō)課的內(nèi)容是人教版課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)六年級(jí)上冊(cè)的分?jǐn)?shù)除法單元中的例1和例2。例1是分?jǐn)?shù)除法的意義認(rèn)識(shí),例2是分?jǐn)?shù)除以整數(shù)的計(jì)算。在這之前學(xué)生已經(jīng)掌握了整數(shù)除法的意義和分?jǐn)?shù)乘法的意義及計(jì)算,而本課的學(xué)習(xí)將為統(tǒng)一分?jǐn)?shù)除法計(jì)算法則打下基礎(chǔ)。例1先是整數(shù)除法回顧,再由100克=1/10千克,從而引出分?jǐn)?shù)除法算式,通過(guò)類(lèi)比使學(xué)生認(rèn)識(shí)到分?jǐn)?shù)除法的意義與整數(shù)除法的意義相同,都是‘已知兩個(gè)因數(shù)的積和其中一個(gè)因數(shù),求另一個(gè)因數(shù)的運(yùn)算’。例2是分?jǐn)?shù)除以整數(shù)的計(jì)算教學(xué),意在通過(guò)讓學(xué)生進(jìn)行折紙實(shí)驗(yàn)、驗(yàn)證,引導(dǎo)學(xué)生將‘圖’和‘式’進(jìn)行對(duì)照分析,從而發(fā)現(xiàn)算法,感悟算理,同時(shí)也初步感受數(shù)形結(jié)合的思想方法。根據(jù)剛才對(duì)教材的理解,本節(jié)課的教學(xué)目標(biāo)是:1、理解分?jǐn)?shù)除法的意義與整數(shù)除法的意義相同。2.理解分?jǐn)?shù)除以整數(shù)的計(jì)算原理,掌握計(jì)算方法,并能正確的進(jìn)行計(jì)算。