內(nèi)容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復(fù)習(xí)公理:兩點之間線段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情.效果:從學(xué)生熟悉的生活場景引入,提出問題,學(xué)生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎(chǔ).第二環(huán)節(jié):合作探究內(nèi)容:學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線.讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標(biāo),即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標(biāo).三、板書設(shè)計兩個一次函數(shù)的應(yīng)用實際生活中的問題幾何問題進一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.
學(xué)習(xí)目標(biāo)1.掌握兩個一次函數(shù)圖像的應(yīng)用;(重點)2.能利用函數(shù)圖象解決實際問題。(難點)教學(xué)過程一、情景導(dǎo)入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關(guān)系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學(xué)完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數(shù)的應(yīng)用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數(shù)表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補,兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯角相等,同旁內(nèi)角互補)來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設(shè)計平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補,兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
解:設(shè)正比例函數(shù)的表達式為y1=k1x,一次函數(shù)的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標(biāo)為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達式的方法:從圖象上選取兩個已知點的坐標(biāo),然后運用待定系數(shù)法將兩點的橫、縱坐標(biāo)代入所設(shè)表達式中求出待定系數(shù),從而求出函數(shù)的表達式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達式某商店售貨時,在進價的基礎(chǔ)上加一定利潤,其數(shù)量x與售價y的關(guān)系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時的售價.
四個不同類型的問題由淺入深,學(xué)生能從不同角度掌握求一次函數(shù)的方法.對于問題4,教師可引導(dǎo)學(xué)生分析,并教學(xué)生要學(xué)會畫圖,利用圖象分析問題,體會數(shù)形結(jié)合方法的重要性.學(xué)生若出現(xiàn)解題格式不規(guī)范的情況,教師應(yīng)糾正并給予示范,訓(xùn)練學(xué)生規(guī)范答題的習(xí)慣.第五環(huán)節(jié)課時小結(jié)內(nèi)容:總結(jié)本課知識與方法1.本節(jié)課主要學(xué)習(xí)了怎樣確定一次函數(shù)的表達式,在確定一次函數(shù)的表達式時可以用待定系數(shù)法,即先設(shè)出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設(shè)函數(shù)表達式;(2)根據(jù)已知條件列出有關(guān)k,b的方程;(3)解方程,求k,b;4.把k,b代回表達式中,寫出表達式.2.本節(jié)課用到的主要的數(shù)學(xué)思想方法:數(shù)形結(jié)合、方程的思想.目的:引導(dǎo)學(xué)生小結(jié)本課的知識及數(shù)學(xué)方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習(xí)題4.5:1,2,3,4目的:進一步鞏固當(dāng)天所學(xué)知識。教師也可根據(jù)學(xué)生情況適當(dāng)增減,但難度不應(yīng)過大.
探究點二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點,求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時,兩個角應(yīng)是同一個三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書設(shè)計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內(nèi)角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內(nèi)角利用已經(jīng)學(xué)過的知識來推導(dǎo)出新的定理以及運用新的定理解決相關(guān)問題,進一步熟悉和掌握證明的步驟、格式、方法、技巧.進一步培養(yǎng)學(xué)生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強化基礎(chǔ),激發(fā)學(xué)習(xí)興趣.
證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∵∠DEC是△ABE的一個外角∴∠DEC=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動目的:讓學(xué)生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學(xué)生的證明思路,特別是不等關(guān)系的證明題,因為學(xué)生接觸較少,因此更需要加強練習(xí).注意事項:學(xué)生對于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學(xué)生找到一個過渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。
(4)從平均分看,兩隊的平均分相同,實力大體相當(dāng);從折線的走勢看,甲隊比賽成績呈上升趨勢,而乙隊比賽成績呈下降趨勢;從獲勝場數(shù)看,甲隊勝三場,乙隊勝兩場,甲隊成績較好;從方差看,甲隊比賽成績比乙隊比賽成績波動小,甲隊成績較穩(wěn)定.綜上所述,選派甲隊參賽更能取得好成績.方法總結(jié):本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊的成績,然后從平均數(shù)、方差的角度來考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設(shè)計數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標(biāo)準(zhǔn)差:方差的算術(shù)平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個量的探索過程,通過實例體會用樣本估計總體的統(tǒng)計思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力.通過小組合作,培養(yǎng)學(xué)生的合作意識;通過解決實際問題,讓學(xué)生體會數(shù)學(xué)與生活的密切聯(lián)系.
由于任何一個一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對應(yīng)的觀點考慮問題,解一元一次不等式也可以歸結(jié)為兩種認識:⑴從函數(shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。⑵從函數(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合。教學(xué)過程中,主要從以上兩個角度探討一元一次不等式與一次函數(shù)的關(guān)系。1、“動”―――學(xué)生動口說,動腦想,動手做,親身經(jīng)歷知識發(fā)生發(fā)展的過程。2、“探”―――引導(dǎo)學(xué)生動手畫圖,合作討論。通過探究學(xué)習(xí)激發(fā)強烈的探索欲望。3、“樂”―――本節(jié)課的設(shè)計力求做到與學(xué)生的生活實際聯(lián)系緊一點,直觀多一點,動手多一點,使學(xué)生興趣高一點,自信心強一點,使學(xué)生樂于學(xué)習(xí),樂于思考。4、“滲”―――在整個教學(xué)過程中,滲透用聯(lián)系的觀點看待數(shù)學(xué)問題的辨證思想。
課堂教學(xué)設(shè)計說明求比一個數(shù)少幾的數(shù)的應(yīng)用題是低年級教學(xué)的一個難點.為了分散難點,在復(fù)習(xí)準(zhǔn)備階段做了孕伏.如:圓比三角形多2個,也可以說三角形比圓少2個.為了突破難點,讓學(xué)生動手?jǐn)[、動口說、動筆寫,全方位地調(diào)動學(xué)生的各種感官參與教學(xué)全過程,使學(xué)生在參與學(xué)習(xí)的活動中領(lǐng)悟出“求比一個數(shù)少幾的數(shù)”的應(yīng)用題仍然是把較大數(shù)看作兩部分組成的,從大數(shù)中去掉大數(shù)比小數(shù)多的部分,就是小數(shù)與大數(shù)同樣多的部分,也就是小數(shù)的數(shù)值.也可以通過“假設(shè)同樣多”去透徹地理解比一個數(shù)少幾的實際意義.確實使學(xué)生理解和掌握了這類應(yīng)用題用減法計算的道理和解答方法.為了讓學(xué)生進一步加深理解和掌握“求比一個數(shù)少幾的數(shù)”的應(yīng)用題的數(shù)量關(guān)系和解答方法,在鞏固練習(xí)的最后設(shè)計了一組對比題目.
教學(xué)目標(biāo):1、使學(xué)生在已有的知識基礎(chǔ)上掌握除數(shù)是兩位數(shù)的除法2、學(xué)生通過解決實際問題探討口算方法,通過實踐練習(xí)活動熟悉、掌握用整十?dāng)?shù)除的口算方法。3、培養(yǎng)學(xué)生主動遷移知識的思維習(xí)慣。教學(xué)過程:(一)情境引入、教學(xué)新知1、讓學(xué)生看課本插圖,根據(jù)圖中的對話,完整地編一道應(yīng)用題。生自由發(fā)言:國慶節(jié)很快就要到了,學(xué)校準(zhǔn)備買一些氣球分給各個班級。如果用80個氣球,要給每班20個,可以分給幾個班?2、讓學(xué)生口算,并鼓勵算法多樣化,并讓學(xué)生說說你是怎么想的?80÷20=()個3、《做一做》練習(xí)90÷30=60÷30=80÷40=4、想一想:83÷20≈()80÷19≈(),這兩道題和例題有什么區(qū)別?聯(lián)系?能否用曾經(jīng)學(xué)過的估算和今天剛學(xué)習(xí)的除法來解決?
教學(xué)建議:億以內(nèi)數(shù)的讀法是在萬以內(nèi)數(shù)的認識基礎(chǔ)上進行教學(xué)的,主要是讓學(xué)生用已有的知識去類推,所以在教學(xué)本課時我們有必要對萬以內(nèi)數(shù)的認識進行有針對性的復(fù)習(xí)。如可采用口答形式復(fù)習(xí)數(shù)位順序及各數(shù)位之間的十進關(guān)系。對于萬以內(nèi)數(shù)的讀法,可以出示一組數(shù)據(jù)如:2005年路橋區(qū)前兩個月共實現(xiàn)農(nóng)林、漁業(yè)總產(chǎn)值17013萬元,其中農(nóng)業(yè)產(chǎn)品6383萬元,林業(yè)產(chǎn)值94萬元,漁業(yè)產(chǎn)值7560萬元。在對萬以內(nèi)數(shù)復(fù)習(xí)的基礎(chǔ)上我們再出示第2頁主題圖,讓學(xué)生讀一讀畫面上呈現(xiàn)的6個大數(shù),也可以讓學(xué)生說說身邊聽到,看到的大數(shù)。在這環(huán)節(jié)中我們就讓學(xué)生憑著自己的理解運用舊知識去讀數(shù)。這里學(xué)生肯定會造成認知上的沖突,從而引入新課教學(xué)。新課時可以按以下環(huán)節(jié)進行:1、計數(shù)器操作,認識計數(shù)單位用計數(shù)器數(shù)數(shù),撥上一萬,然后一萬一萬地數(shù),一直數(shù)到九萬后,再加一萬是多少?認識十個一萬是十萬,用同樣的方法,完成一百萬,一千萬,一億的認識。
一、認識射線和直線1.認識線段的特征。(下面的板書填在一個表里)出示線段(長4分米)。提問:誰來告訴大家,黑板上的圖形叫什么?(板書:線段)提問:線段要怎樣畫?(按學(xué)生的回答畫線段)。畫線段時,開始和結(jié)束都要注意什么?指出:線段是直的,有兩個端點。是有限長的,我們可以用直尺量出線段的長度。誰能來量一量黑板上的線段,告訴大家,它的長是多少?,F(xiàn)在看老師再來畫一條5分米長的線段。2.認識射線。如果把線段的一端無限延長,(老師延長第二條線段)就得到一條射線。(板書:射線)把射線與線段比一比,它有什么特點?指出:射線也是直的,它只有一個端點。另一方?jīng)]有端點,可以無限地延長下去,是無限長的。直尺或三角尺可以畫出射線:先點一點,再沿著尺的一邊畫射線。請大家在練習(xí)本上畫一條射線。
教學(xué)難點:利用數(shù)的分解組成,正確地計算5以內(nèi)的減法。教學(xué)準(zhǔn)備:小圓片、小棒、小黑板。教學(xué)過程:一、復(fù)習(xí):1、拍手接力游戲 。2、看圖說圖意,并列式計算。3、復(fù)習(xí)5以內(nèi)數(shù)的組成。二、新授:1、(小黑板)出示畫圖:樹上有5只鳥,飛走了一只。根據(jù)這幅圖,你能提什么問題呢?2、那么你怎么列式呢?先和小組里的小朋友說一說,再指名回答,請學(xué)生上來板書列式。3、小組內(nèi)交流:“5-1”得幾?你是怎么算的?和組里的小朋友交流,每個小朋友都說自己的想法,是怎樣得出結(jié)果的。4、匯報情況:指名小老師上來教大家計算的過程(提倡算法多樣化,教師可以有意識請想法不同的學(xué)生上來說一說)5、抽象出計算過程:引導(dǎo)學(xué)生如果不看圖,不數(shù)手指,你會計算“5-1”得幾嗎?(引導(dǎo)學(xué)生用數(shù)的組成知識來計算)
教學(xué)難點:能用多種方法進行計算。教學(xué)準(zhǔn)備:計數(shù)器、小棒、投影片等。教學(xué)過程:一、創(chuàng)設(shè)情景(投影出示)在一個美麗的大森林里,一天早上,二只松鼠提著一個籃子上山采松果,松鼠媽媽采了14個,松鼠寶寶采了3個,然后就一起高高興興地回家去了。(學(xué)生看圖,然后讓學(xué)生根據(jù)圖意編一個小故事,比一比,看誰編的故事最有趣)1、指名編故事。2、有誰能提出有關(guān)的數(shù)學(xué)問題。(先同桌互相說,然后再指名說)教師根據(jù)學(xué)生的回答進行選擇性的板書:(1)一共有多少個松果?(2)松鼠媽媽比松鼠寶寶多采多少個?(3)松鼠寶寶比松鼠媽媽少采多少個松果?(4)松鼠寶寶還要采多少個才能和松鼠媽媽采的同樣多?3、先解決第一個問題:問:(1)要求一共有多少個松果?用什么方法計算?如何列式?為什么用加法計算?說一說你的理由?還有誰能說?(2)14+3=?你是怎樣算的?同桌互說算法,然后指名說。
四、全課總結(jié)[設(shè)計意圖:通過電教媒體把抽象的數(shù)學(xué)知識與學(xué)生的心理和生活中喜歡做游戲的特點結(jié)合起來,使學(xué)生在樂中學(xué),在玩中學(xué),有利于學(xué)生對知識的理解和掌握。]教學(xué)反思:根據(jù)學(xué)生年齡小、活潑好動的特點,我在教學(xué)中力求激發(fā)學(xué)生學(xué)習(xí)的積極性、主動性,使學(xué)生在愉悅和諧的課堂氣氛中獲取新知,并培養(yǎng)了學(xué)生的多種能力。第十五課時: 生活中的數(shù)教學(xué)內(nèi)容:教科書第46頁、第57頁、第87頁“生活中的數(shù)”。教材分析:本節(jié)課教師通過課件演示,創(chuàng)設(shè)生活情境,在現(xiàn)實世界中尋找生活素材,成功地將學(xué)生的視野拓寬到他們熟悉的生活空間。然后通過說一說、擺一擺、猜一猜、算一算等實踐活動,讓學(xué)生感覺到數(shù)學(xué)就在他們身邊,看得見、摸得著。學(xué)生自始至終地參與觀察、操作、猜測、驗證、思考等多種實踐活動,積極性非常高。可以說,我在圍繞“數(shù)與生活”這一中心設(shè)計教學(xué)活動時,也在積極地進行構(gòu)建“生活數(shù)學(xué)”教學(xué)體系的探索與嘗試。
教學(xué)目標(biāo):1、通過多種形式的練習(xí),提高學(xué)生的計算速度和正確率。2、培養(yǎng)學(xué)生看圖表的能力,初步滲透統(tǒng)計思想。3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,同時培養(yǎng)學(xué)生的數(shù)感。教學(xué)重、難點:熟練掌握計算方法并能夠進行正確的計算,能夠有效的提高計算速度及正確率教學(xué)過程:一、基本練習(xí)1、口算10-38+49-1 9-88+215+38+77+55+6 3+911-19+68+86+78+6 9+82+93+102、()里應(yīng)填什么數(shù)?(1)比9大2的數(shù)是(),比7多4的數(shù)是()。(2)寫出得數(shù)是13的四道算式?( )、()、( )、()(3)練習(xí)9+()=13 8+()=1512-()=2()+7=14()+()=12 ()+()=19二、指導(dǎo)練習(xí)練習(xí)二十一第4題(1)學(xué)生看書,弄清題目的意思。問:這題是什么意思?(2)分組討論,并派代表說一說。(3)教師板書,引導(dǎo)學(xué)生看統(tǒng)計表。指導(dǎo)學(xué)生看表:表的第一豎行畫有皮球、毽子、跳繩;第二豎行上面寫著“一班有”,下面的數(shù)就是一班有這三種體育用品的數(shù)量,即一班有7個皮球、5個毽子、4條跳繩;
教材分析:例4是讓學(xué)生判斷媽媽要買三種生活用品,帶100元錢夠不夠。可以結(jié)合這種生活中經(jīng)常出現(xiàn)的情景,使學(xué)生認識到,在日常生活中,有時需要進行精確計算,有時根據(jù)實際的需要只要估算出大致的結(jié)果就可以了,便于學(xué)生更完整、全面、深刻地認識數(shù)學(xué)的功能。估算的策略是多樣化的,可以用連加,也可以用連減,還可以用加減混合,中間包含了加法的估算和減法的估算。教材上呈現(xiàn)了兩種估算策略,有一名學(xué)生用連減的方法先估算出100-28大約得70,再估算出70-43大約得30,從而判斷用剩下的錢買水杯還夠,兩步計算中都運用了估算。另一名學(xué)生先用加法估算出28+43大約得70,再口算出大約還剩30元,從而得出買水杯還夠的結(jié)論,第一步計算運用了估算,第二步是精確計算。由于每個個體的思維方式和思維水平不同,所采取的估算策略也是不同的,教材上除了提供這兩種估算策略以外,還有一名學(xué)生提出問題:“還可以怎樣算呢?”提示教師在教學(xué)時讓學(xué)生靈活采用適合自己的估算方法,體現(xiàn)了算法多樣化的思想。
1、試驗性操作實驗師:大家說紅花的照片能不能用方格代表?下面請同學(xué)們用方格代表紅花的照片,用我們的學(xué)具卡片擺出紅花的朵數(shù)。(學(xué)生操作,教師巡視。)師:大家說黃花的朵數(shù)能不能也可以這樣操作出?請同學(xué)們用上面的方法再操作出黃花的朵數(shù)。(學(xué)生操作)師:同學(xué)們已經(jīng)擺出了紅花的朵數(shù)和黃花的朵數(shù),怎么操作才能知道紅花和黃花一共是多少朵?(把紅花的朵數(shù)和黃花的朵數(shù)合并起來數(shù)一數(shù))(學(xué)生操作,教師巡視。)師:請把合并起來的數(shù)整理一下,讓人一看就能知道是多少朵好嗎?請同學(xué)們寫出算式的答案。(即操作表達式)教師多媒體演示全部操作實驗過程,并簡單小結(jié)。2、驗證性操作實驗師:同學(xué)們,假如紅花是56朵,黃花是38朵,求“紅花和黃花共幾朵?”你們還能不能用上面的操作實驗方法來解決?(能)好!那就請你們試試看。(學(xué)生操作,教師巡視。)