解:設甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結:設未知數(shù)時,一般是求什么,設什么,并且所列方程的個數(shù)與未知數(shù)的個數(shù)相等.解這類問題的應用題,要抓住題中反映數(shù)量關系的關鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關系的關鍵字的含義.三、板書設計列方程組,解決問題)一般步驟:審、設、列、解、驗、答關鍵:找等量關系通過“雞兔同籠”,把同學們帶入古代的數(shù)學問題情景,學生體會到數(shù)學中的“趣”;進一步強調(diào)數(shù)學與生活的聯(lián)系,突出顯示數(shù)學教學的實際價值,培養(yǎng)學生的人文精神;進一步豐富學生數(shù)學學習的成功體驗,激發(fā)學生對數(shù)學學習的好奇心,進一步形成積極參與數(shù)學活動、主動與他人合作交流的意識.
方法總結:(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調(diào)自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
解:設需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結:列方程最重要的是審題,只有理解題意,才能恰當?shù)卦O出未知數(shù),準確地找出已知量和未知量之間的等量關系,正確地列出方程.在列出方程后,還應根據(jù)實際需求,注明自變量的取值范圍.三、板書設計一元二次方程概念:只含有一個未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為?! ?數(shù),a≠0),其中ax2,bx,c 分別稱為二次項、一次項和 常數(shù)項,a,b分別稱為二次 項系數(shù)和一次項系數(shù)本課通過豐富的實例,讓學生觀察、歸納出一元二次方程的有關概念,并從中體會方程的模型思想.通過本節(jié)課的學習,應該讓學生進一步體會一元二次方程也是刻畫現(xiàn)實世界的一個有效數(shù)學模型,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣.
(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)
方程有兩個不相等的實數(shù)根.綜上所述,m=3.易錯提醒:本題由根與系數(shù)的關系求出字母m的值,但一定要代入判別式驗算,字母m的取值必須使判別式大于0,這一點很容易被忽略.三、板書設計一元二次方程的根與系數(shù)的關系關系:如果方程ax2+bx+c=0(a≠0) 有兩個實數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應用利用根與系數(shù)的關系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關系求方程的另一根判別式及根與系數(shù)的關系的綜合應用讓學生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達定理,感受不完全的歸納驗證以及演繹證明.通過觀察、實踐、討論等活動,經(jīng)歷發(fā)現(xiàn)問題、發(fā)現(xiàn)關系的過程,養(yǎng)成獨立思考的習慣,培養(yǎng)學生觀察、分析和綜合判斷的能力,激發(fā)學生發(fā)現(xiàn)規(guī)律的積極性,激勵學生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴謹?shù)闹螌W精神.
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據(jù)一元二次方程根的情況,利用判別式得到關于一元二次方程系數(shù)的等式或不等式,再結合其他條件解題.三、板書設計用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學生合情合理的推理能力,并認識到配方法是理解求根公式的基礎.通過對求根公式的推導,認識到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會數(shù)式通性,感受數(shù)學的嚴謹性和數(shù)學結論的確定性.提高學生的運算能力,并養(yǎng)成良好的運算習慣.
首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調(diào)自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
3、一般地,對于關于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致。【知識應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數(shù)式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數(shù)式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應用已知a,b,c分別是△ABC的三邊長,當m>0時,關于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數(shù)根,請判斷△ABC的形狀.解析:先將方程轉化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關系,即可判定△ABC的形狀.解:將原方程轉化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據(jù)一元二次方程根的情況,利用判別式得到關于一元二次方程系數(shù)的等式或不等式,再結合其他條件解題.
2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 。【歸納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
(1)示例一(橫向聯(lián)想) 李白的送別詩:①“思君不見下渝州”,表達依依惜別的無限情思,可謂語短情長。②“仍憐故鄉(xiāng)水,萬里送行舟”,意思是“我”還是憐愛故鄉(xiāng)的水,流過萬里送“我”遠行。這一句運用了擬人的修辭手法,將故鄉(xiāng)水擬人化,借寫故鄉(xiāng)水有情,不遠萬里,依依不舍送“我”遠別故鄉(xiāng),表達了詩人離開故鄉(xiāng)時依依不舍、思念故鄉(xiāng)的感情。③“孤帆遠影碧空盡,唯見長江天際流?!边@兩句看起來似乎是寫景,但在寫景中包含著一個充滿詩意的細節(jié)。李白一直把朋友送上船,船已經(jīng)揚帆而去,而他還在江邊目送遠去的船帆。李白望著帆影,一直看到帆影逐漸模糊,消失在碧空的盡頭,可見目送時間之長。帆影已經(jīng)消失了,然而李白還在翹首凝望,這才注意到一江春水,在浩浩蕩蕩地流向遠遠的水天交接之處?!拔ㄒ婇L江天際流”,是眼前景象,可是誰又能說是單純地寫景呢?李白對朋友的一片深情,李白的向往,不正體現(xiàn)在這富有詩意的神馳目注之中嗎?詩人的心潮起伏,不正像那浩浩東去的一江春水嗎?
審美鑒賞與創(chuàng)造——詩歌意象“詩是無聲畫”,詩要用形象說話。一般說來,詩歌寫作是由“靈感—尋象—尋言”這三個階段構成的。獲得靈感,就是獲得一種詩美體驗;獲得詩美體驗之后,就要將詩美體驗轉化為詩歌意象。詩歌意象創(chuàng)作要注意以下幾個方面:1.象征手法的運用。象征多用具體生動的形象來暗示某種生活、情緒和哲理,可以將抽象的事物變得具體可感。2.要善于將抽象的感情形象化。詩歌創(chuàng)作中,或是即事抒情,或是融情于景,或是托物言志,要盡力將情感形象化,避免單純地抒情。3.意象的組合。意象組合是用一個接一個的意象,按照一定的美學原則把它組合起來,形成一幅幅跳躍的畫面,使它們產(chǎn)生對比、襯托、聯(lián)想、暗示等作用,讓讀者通過一系列的意象組合去揣摩和領悟作者的意圖。
二、初讀,解讀“早行”,感受意象的豐富1.尋讀意象課件出示:詩人圍繞“早行”一詞,寫了哪些典型特征的細節(jié)、景物?如何體現(xiàn)“早行”?學生自由誦讀、思考交流。教師點撥:頷聯(lián)十種景物的十個名詞——雞、聲、茅、店、月、人、跡、板、橋、霜。一詞一景,讓我們獲得廣闊的想象空間,組成意韻豐富的畫面。這就是古典詩歌的“意象疊加”法。預設:詩歌中處處體現(xiàn)“早行”,如“晨起動征鐸”(清晨起床,車馬鈴聲叮叮當當),“雞聲茅店月”(雞鳴早看天),“人跡板橋霜”(莫道君行早,更有早行人),“枳花明驛墻”(“明”反襯“天暗”,說明“早”)。2.延讀意象疊加的詩句課件出示:(1)枯藤老樹昏鴉,小橋流水人家,古道西風瘦馬。(馬致遠《天凈沙·秋思》)(2)樓船夜雪瓜洲渡,鐵馬秋風大散關。(陸游《書憤》)(3)細草微風岸,危檣獨夜舟。(杜甫《旅夜抒懷》)(4)桃李春風一杯酒,江湖夜雨十年燈。(黃庭堅《寄黃幾復》)
8、加強對音、體、美、等課程實施的監(jiān)督與檢查,確保上足課節(jié)。9、將學困生轉化工作及優(yōu)生培養(yǎng)工作落到實處。提高對學困生的關注度,加強對學困生的心理輔導及課業(yè)輔導。10、每周一次級部長會,每月一次學科長會,建立教務會議記錄,學科教研、活動記錄,教師上交材料記錄。11、本學期共21周,實際授課17周。五、教學工作配檔表九月1、劃分班級,安排好教師課務,排好課程表。2、參加XX市教研室召開的小學教學教研工作會議3、安排各科教師參加XX市教研室組織的學科研討。4、制定好各種教學、教研工作計劃。5、安排并開展本學期公開課活動。6、印發(fā)各種表冊。7、對小一新生建檔。8、做好十一長假的作業(yè)布置工作十月1、組織學習煙臺市小學教學常規(guī)、課程標準的學習。2、檢查集體備課情況。3、進行書法、口算、口語表達技能比賽。4、積極準備上級的專項教學常規(guī)督導。5、積極打磨XX市學科優(yōu)質(zhì)課。
三、下一步工作打算(一)產(chǎn)業(yè)招商再加力。以現(xiàn)代農(nóng)業(yè)示范園二期、“*之心”農(nóng)產(chǎn)品加工園為主推項目,拓寬渠道加強園區(qū)宣傳推廣、以浙、蘇為重點地域開展招商引資工作,盡可能引優(yōu)引強。一是保持與意向企業(yè)不斷聯(lián),用心用情服務,確保在談項目留得住、能落戶;二是緊盯先進地區(qū)優(yōu)質(zhì)龍頭企業(yè),力爭引進一批綜合實力強、科技水平高、營銷渠道廣的大企業(yè)入園發(fā)展。特別是,針對高層廠房加強招商,盡可能減少廠房空置率;三是大力宣傳園區(qū)創(chuàng)業(yè)創(chuàng)新政策和區(qū)位優(yōu)勢,吸引本地能人入駐園區(qū)發(fā)展現(xiàn)代農(nóng)業(yè)項目。(二)高質(zhì)高效推項目。一是嚴格按照項目計劃,依法依規(guī)做好2023年農(nóng)村產(chǎn)業(yè)融合示范園專項項目的實施工作,*月份完成項目方案設計、招投標等前期工作,確保在今年*月底完成項目建設。二是加強智能工廠化育秧中心項目對接,*月份完成項目規(guī)劃設計及運營主體合作簽約,爭取在*月前完成主體工程建設。
三、下一步工作打算(一)產(chǎn)業(yè)招商再加力。以現(xiàn)代農(nóng)業(yè)示范園二期、“*之心”農(nóng)產(chǎn)品加工園為主推項目,拓寬渠道加強園區(qū)宣傳推廣、以浙、蘇為重點地域開展招商引資工作,盡可能引優(yōu)引強。一是保持與意向企業(yè)不斷聯(lián),用心用情服務,確保在談項目留得住、能落戶;二是緊盯先進地區(qū)優(yōu)質(zhì)龍頭企業(yè),力爭引進一批綜合實力強、科技水平高、營銷渠道廣的大企業(yè)入園發(fā)展。特別是,針對高層廠房加強招商,盡可能減少廠房空置率;三是大力宣傳園區(qū)創(chuàng)業(yè)創(chuàng)新政策和區(qū)位優(yōu)勢,吸引本地能人入駐園區(qū)發(fā)展現(xiàn)代農(nóng)業(yè)項目。(二)高質(zhì)高效推項目。一是嚴格按照項目計劃,依法依規(guī)做好2024年農(nóng)村產(chǎn)業(yè)融合示范園專項項目的實施工作,*月份完成項目方案設計、招投標等前期工作,確保在今年*月底完成項目建設。
l 負責獨立開展公司內(nèi)部專項培訓(如公司業(yè)務模塊的培訓、通用類課程培訓等)工作,包括培訓方案設計、培訓資源的挖掘和協(xié)調(diào)、培訓的執(zhí)行與效果復盤、擔任課程講師并開發(fā)相應課件;l 負責獨立開展公司對外培訓,與公司現(xiàn)有客戶單位、潛在客戶單位開展公司業(yè)務培訓,以達到開發(fā)與維護客戶、項目營銷及推廣、產(chǎn)品銷售的目的;l 負責公司培訓需求調(diào)研,組織梳理、更新和管理培訓資源,搭建和完善課程體系;l 負責內(nèi)訓體系搭建,包括內(nèi)訓制度制定,內(nèi)訓執(zhí)行機制設計,內(nèi)訓機制過程管控。l 對招聘的新員工,及時進行入門培訓,根據(jù)團隊目標及市場情況,制定階段性的培訓計劃;
2、通過討論及知識競賽的形式、知道如何做一名將衛(wèi)生的孩子?! ?3、知道講衛(wèi)生可以給自己和他人帶來愉快的情緒、同時也會受到大家的歡迎的?! 』顒訙蕚洌?1、有關個人衛(wèi)生和環(huán)境衛(wèi)生的知識競賽題、 2、教師演唱歌曲《豬小弟》 3、五角星貼花若干。 活動過程: 一、教師講述故事,引出主題 今天老師帶來了一個故事《小豬變干凈》 師講述故事后提問:豬小弟為什么找不到朋友玩游戲?為什么它身上臟,大家就不愿意和它玩呢?最后,它為什么能找到朋友玩?