提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

小學數(shù)學人教版六年級下冊《比例尺》說課稿

  • 點到直線的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    點到直線的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點間的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    兩點間的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

  • 傾斜角與斜率教學設計人教A版高中數(shù)學選擇性必修第一冊

    傾斜角與斜率教學設計人教A版高中數(shù)學選擇性必修第一冊

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時實數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計算方法(1)判斷兩點的橫坐標是否相等,若相等,則直線的斜率不存在.(2)若兩點的橫坐標不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進行計算.金題典例 光線從點A(2,1)射到y(tǒng)軸上的點Q,經(jīng)y軸反射后過點B(4,3),試求點Q的坐標及入射光線的斜率.解:(方法1)設Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點Q的坐標為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設Q(0,y),如圖,點B(4,3)關(guān)于y軸的對稱點為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點Q的坐標為(0,5/3).

  • 兩條平行線間的距離教學設計人教A版高中數(shù)學選擇性必修第一冊

    兩條平行線間的距離教學設計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點坐標教學設計人教A版高中數(shù)學選擇性必修第一冊

    兩直線的交點坐標教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 直線的一般式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的一般式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 圓的標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓的標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設——設所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設方程,得所求圓的方程.跟蹤訓練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓的一般方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓與圓的位置關(guān)系教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點斜式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的點斜式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

  • 直線的兩點式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的兩點式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線與圓的位置關(guān)系教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線與圓的位置關(guān)系教學設計人教A版高中數(shù)學選擇性必修第一冊

    切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 《聲聲慢(尋尋覓覓)》說課稿 2022-2023學年統(tǒng)編版高中語文必修上冊

    《聲聲慢(尋尋覓覓)》說課稿 2022-2023學年統(tǒng)編版高中語文必修上冊

    5、賞析詩歌:(1)結(jié)合書本注釋,讀懂詩意。并找出詩中最能體現(xiàn)“愁”情的詞句。(2)分析疊詞的作用(3)選擇一個自己有感觸的意象,聯(lián)系你接觸過的詩文,小組討論這個意象在詞中有什么象征意義?以上這些意象,營造出了一種怎樣的意境?(設計說明:高中語文新課程標準重視對學生的自主學習能力和合作能力的培養(yǎng),結(jié)合考綱對古代詩文閱讀的要求,聯(lián)系高考對詩歌的語言、形象、表達技巧和思想情感的考查范圍。我認為詩歌教學應注重把握詩歌內(nèi)容,領(lǐng)略其藝術(shù)特色,從而體會其情感。所以我在這一環(huán)節(jié)的問題設置上我以愁情引入,層層遞進,逐步深入,充分發(fā)揮學生的主觀能動性,培養(yǎng)學生的合作學習能力,讓學生主動參與課堂,學習詩歌賞析步驟,通過把握詩歌內(nèi)容,體會詩人的哀情。)

  • 《包身工》說課稿(二) 2021-2022學年統(tǒng)編版高中語文選擇性必修中冊

    《包身工》說課稿(二) 2021-2022學年統(tǒng)編版高中語文選擇性必修中冊

    3、通過分析理解作者是如何在典型環(huán)境中刻畫出典型人物的。(設計意圖:因為《普通高中語文新課程標準》中要求學生把握報告文學的語言特色,所以需要分析文中重點語句的語言特色。同時,由于報告文學的藝術(shù)價值體現(xiàn)在文學性上,它不能像新聞報道那樣,只有事件梗概,它必須刻畫人物形象,必須有環(huán)境等方面的描寫,加強語言的藝術(shù)感染力,所以在教學過程中要注重對典型環(huán)境中的典型人物的分析。)三、課時安排:兩課時四、教學設計:(第一課時的教學過程)1、通過表格來對比分析報告文學與新聞的異同點。使學生明確理解到報告文學的藝術(shù)價值在于它的文學性,而其文學性主要通過對人物的刻畫、環(huán)境的描寫等方面的文學手段的綜合運用。2、為了更好的了解本文,要學生相互分享收集到的時代背景資料及作者簡介。3、讓學生快速瀏覽課文找出本文的表層結(jié)構(gòu),初步感知到本文的表層結(jié)構(gòu)是按照時間順序來敘述描寫包身工一天的活動及按事物發(fā)展的順序敘述包身工制度的產(chǎn)生發(fā)展及膨大。

  • 《峨日朵雪峰之側(cè)》說課稿 2021-2022學年統(tǒng)編版高中語文必修上冊

    《峨日朵雪峰之側(cè)》說課稿 2021-2022學年統(tǒng)編版高中語文必修上冊

    (二)朗讀詩歌,整體感知好詩不厭百回讀,熟讀深思子自知。在整體感知階段,綜合利用自由朗讀、齊讀和示范朗讀,讓學生借助誦讀走進詩歌。 設計意圖:《普通高中語文課程標準》提出“在語文教育中,提倡誦讀,因為這種方式是心、口、耳、目并用,感知的強度比單一感官的感受極大增強,語感的生成速度和品質(zhì)都會提高。” 語文學科核心素養(yǎng)之“語言建構(gòu)與運用”也要求采用語感與語理相互促進的辦法來提高語言運用能力,而語感與語理的培養(yǎng)離不開“誦讀”這一活動。多讀幾遍,不僅可使其義自見,也可使其意自明、其理自通、其氣自涌。(三)鑒賞詩歌,重點突破在多樣的朗讀活動之后,我們不難發(fā)現(xiàn),這一首現(xiàn)代詩,它在語意和詩意理解上并不像古典詩歌那樣有著語言、歷史及手法方面的障礙。但是,這并不代表現(xiàn)代詩就不值得仔細品味、認真咀嚼,經(jīng)典的現(xiàn)代詩依然有著其濃濃的詩味和詩性。我將借助古典詩歌鑒賞方法來指導學生解讀現(xiàn)代詩歌。我們先從學生最熟悉、賞析起來最容易的修辭手法入手,學生呈現(xiàn)了以下自主學習的成果。

  • 《荷塘月色》說課稿 (三)2022—2023學年統(tǒng)編版高中語文必修上冊

    《荷塘月色》說課稿 (三)2022—2023學年統(tǒng)編版高中語文必修上冊

    環(huán)節(jié)二,在品讀過程中把重點字詞的讀音和意義融入其中。這是新課程標準的體現(xiàn)環(huán)節(jié)三,提出問題:作者的思想情感在文中是怎樣變化的?讓學生帶著這個問題再次自讀課文。三、仔細品讀,把握感情。引導學生去把握全文的感情基調(diào),解決剛才提出的問題。 賞析語段,品味語言,在把握全文感情基調(diào)的基礎上,啟發(fā)學生聯(lián)想,假設眼前有一片荷塘,設問學生會看到什么?很自然會看到:葉,花,聞到花香。在此基礎上逐步引導學生賞析課文精彩語段四、五自然段,當然教師要作必要的啟發(fā)指點,尤其是在那些容易被忽略之處,以下僅舉一例: 荷香與歌聲有什么可比的共同點?(領(lǐng)會通感手法的運用)在點撥通感這一修辭手法時,我舉了詩人艾青描寫日本著名指揮家小澤征爾的話:“你的眼睛在,你的耳朵在傾聽。”這個例子能詩意的解釋通感這一修辭手法。

  • 《永遇樂 · 京口北固亭懷古》說課稿(二) 2021-2022學年統(tǒng)編版高中語文必修上冊

    《永遇樂 · 京口北固亭懷古》說課稿(二) 2021-2022學年統(tǒng)編版高中語文必修上冊

    此環(huán)節(jié)運用的是合作探究法,采用小組討論的形式開放回答即可。通過本課的學習,學生可以總結(jié)歸納出辛棄疾主張抗敵,收復失地的愛國熱情對南宋政府茍且偏安的不滿,吸取的歷史教訓,告誡當使用者不要草率用兵。對于決策者提出警告,抒發(fā)自己壯志難酬的感慨,教師總結(jié)歸納即可。本詩寫出最大特點就是大量典故的運用。學生可以本詩對用點表達自己的看法,我將在在PPT展示詩歌用典的意義,意在幫助學生理解更好用典這種詩歌技巧。本篇是一首詠史懷古詩,本單元學習了兩首同題材詩歌,有必要使學生掌握一類型的詩歌鑒賞方法。(五)比較閱讀 品味歷史這一環(huán)節(jié)PPT將展示上次課程學習的《念奴嬌赤壁懷古》并從內(nèi)容,形式等角度分析異同,采用提問的方法。此環(huán)節(jié)結(jié)束后簡要歸納詠史懷古詩類型。目的是鞏固加強對于詠史懷古題材詩歌理解,理解歸納詠史懷古詩題材類型。(六)布置作業(yè) 鞏固感知鑒賞李白《越中覽古》我將采用習題的形式,目的是使學生在實踐中運用所學方法鑒賞詠史懷古詩。

  • 《歸園田居(其一)》說課稿 2021-2022學年統(tǒng)編版高中語文必修上冊

    《歸園田居(其一)》說課稿 2021-2022學年統(tǒng)編版高中語文必修上冊

    運用比較法,讓學生討論比較字詞改換后與原詩在表達效果上有何異同,然后教師和同學們共同總結(jié)出原詩中的畫線字詞主要運用了比喻和擬人等修辭手法,顯得既生動又含蓄,富有意境美,而改后的字詞顯得直白而又重復。通過文本研讀部分的學習,學生對詩歌內(nèi)容有了較深入的理解,為了使學生拓寬知識面,加強思想價值觀的教育引導,在拓展練習部分我設置了一個探究性的問題,讓學生談談如何看待陶淵明歸隱的問題,我采用合作探究法,讓學生分組互動討論、自由發(fā)言。教師針對學生的發(fā)言,及時地加以點撥:陶淵明不與統(tǒng)治者合作,令人敬佩;歌唱田園風光,令人贊嘆;歸隱田園有獨善其身,消極避世因素,這一點自然不應當苛求古人。

  • 《百合花》《哦,香雪》說課稿 2022-2023學年統(tǒng)編版高中語文必修上冊

    《百合花》《哦,香雪》說課稿 2022-2023學年統(tǒng)編版高中語文必修上冊

    1、導入:青春之美,彌足珍貴,青春的價值又各不相同,如果革命之志是毛澤東青春的美好,那蓬勃的創(chuàng)造力就是郭沫若的青春之歌,如果奉獻與犧牲是聞一多青春的價值,那么自由就是雪萊青春的底色,我們前兩節(jié)課遨游在詩歌的天空,那么我們這節(jié)課我們要來到小說的園地,看看青春在這片小說的沃土里展現(xiàn)怎樣的顏色。目的:創(chuàng)設詩意,進入情境,延繼單元主題,引出學習內(nèi)容2、學習任務一:預習檢查,概括情節(jié)目的:檢查預習成果,落實整體感知把握主旨的課前學習任務。3、學習任務二:情境探究:品人物悟青春之美假設我校文學社正在舉辦“文學中最美的青春人物”評選活動,讓同學在《百合花》與《哦,香雪》中推選出最能體現(xiàn)青春美好的人物,還需要附上簡短的推薦理由以便評委組評議。誰最美?大家為此爭論不休,如果你也參與推薦,那你覺得誰才是最美的青春人物?你會為他寫上怎樣的推薦理由?(思考提示:依據(jù)表格內(nèi)容思考并完成表格,小組內(nèi)交流3分鐘,推選代表回答)

  • 《百合花》說課稿 2021-2022學年統(tǒng)編版高中語文必修上冊

    《百合花》說課稿 2021-2022學年統(tǒng)編版高中語文必修上冊

    1. 厘清全文的線索、情節(jié),體會小說結(jié)構(gòu)嚴謹、清新俊逸的寫作風格。2. 分析通訊員、新媳婦的人物形象,通過品味生動的細節(jié)來感知人物身上洋溢的人性美、青春美。3.通過自主、合作、探究,從不同角度和層面發(fā)掘“百合花”這一主題的獨特意蘊。4.通過把握小說人性美、青春美的主題,引導學生提升自身的精神品質(zhì)和道德情操。教學重點是:通訊員及新媳婦的性格特征分析,小說如何通過細節(jié)描寫來塑造人物性格。教學難點是:從不同角度和層面發(fā)掘“百合花”這一主題的獨特意蘊。【教學方法】本文篇幅較長,但我們決定用一個課時來完成教學任務,課前讓學生充分預習文本,自己搜集有關(guān)“百合花”的知識資料,自主梳理文章的故事情節(jié),自主歸納人物的形象、性格特點。課堂上采用情景激趣法、啟發(fā)誘導法、合作探究法等教學方法來引導學生學習探究,培養(yǎng)學生的文學鑒賞能力。

上一頁123...155156157158159160161162163164165166下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!