二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒(méi)有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱軸或與對(duì)稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過(guò)拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過(guò)點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過(guò)雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問(wèn)題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來(lái)處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過(guò)右焦點(diǎn)F2,所以,直線AB的方程為
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長(zhǎng)軸長(zhǎng)是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長(zhǎng)軸長(zhǎng)、半短軸長(zhǎng)、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長(zhǎng)軸長(zhǎng)為10,半短軸長(zhǎng)為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長(zhǎng)軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過(guò)對(duì)稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過(guò)旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.
二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來(lái)表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說(shuō)法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過(guò)坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說(shuō)明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
(四)、課堂總結(jié)、體驗(yàn)成功引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)、學(xué)習(xí)方法、學(xué)習(xí)結(jié)果、情感等進(jìn)行全面總結(jié),讓學(xué)生體驗(yàn)學(xué)習(xí)的成功感,同時(shí),進(jìn)一步系統(tǒng)、完善知識(shí)結(jié)構(gòu)??傊?,本課的教學(xué)設(shè)計(jì)力求體現(xiàn)“以學(xué)生為本”的教學(xué)理念,具體體現(xiàn)在以下幾個(gè)方面:(一)、創(chuàng)設(shè)生動(dòng)的情景,激發(fā)探索的樂(lè)趣,讓學(xué)生感受數(shù)學(xué)與生活的聯(lián)系。課的引入以一幅學(xué)生經(jīng)常接觸的,喜聞樂(lè)見的購(gòu)買玩具這一題材為切入點(diǎn)。在練習(xí)設(shè)計(jì)中,改變枯燥抽象的數(shù)字計(jì)算練習(xí),選取了一組寓有童趣的素材。它們以豐富多彩的呈現(xiàn)方式深深地吸引著學(xué)生,使他們認(rèn)識(shí)到現(xiàn)實(shí)生活中蘊(yùn)含著大量的數(shù)學(xué)信息,使學(xué)生感到有趣、有挑戰(zhàn)性,激發(fā)他們好奇,好勝的心理,從而誘發(fā)他們?nèi)ブ鲃?dòng)尋求解決問(wèn)題的策略,同時(shí)體驗(yàn)到數(shù)學(xué)與生活的聯(lián)系。
(一)創(chuàng)設(shè)情境,提出問(wèn)題:學(xué)生的學(xué)習(xí)動(dòng)機(jī)和求知欲不會(huì)自然涌現(xiàn),它取決于教師所創(chuàng)設(shè)的學(xué)習(xí)情境,而興趣是最好的老師,因此,在課的一開始,我設(shè)計(jì)了“今天我們?cè)偃ソ中墓珗@看一看”這一情境:出示情境圖:你看到了什么信息,你能提出什么數(shù)學(xué)問(wèn)題?(板書)學(xué)生提出很多問(wèn)題。設(shè)計(jì)意圖:數(shù)學(xué)來(lái)源于生活,有趣的生活情境,激發(fā)學(xué)生好奇心和強(qiáng)烈的求知欲,讓學(xué)生在生動(dòng)具體的情境中學(xué)習(xí)數(shù)學(xué),從而使教材與學(xué)生之間建立相互包容、相互激發(fā)的關(guān)系。讓學(xué)生既認(rèn)識(shí)了自身,又大膽而自然地提出猜想。(二)、探索新知解決問(wèn)題“教師為主導(dǎo),學(xué)生為主體,探究為主線”的三為主原則“保護(hù)環(huán)境”花壇一共用了多少盆花?怎樣列式?
一、說(shuō)內(nèi)容今天我說(shuō)課的內(nèi)容是人教版數(shù)學(xué)三年級(jí)下冊(cè)第四單元的《兩位數(shù)乘兩位數(shù)(進(jìn)位)的筆算方法》課本49頁(yè)的內(nèi)容。二、說(shuō)教材本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了兩位數(shù)乘兩位數(shù)的不進(jìn)位筆算乘法的基礎(chǔ)上進(jìn)行教學(xué)的。學(xué)習(xí)這部分內(nèi)容,有利于學(xué)生完整地掌握整數(shù)乘法的計(jì)算方法,為后面學(xué)習(xí)乘數(shù)數(shù)位是更多位的筆算乘法墊定基礎(chǔ)。三、說(shuō)教學(xué)目標(biāo)根據(jù)這一數(shù)學(xué)內(nèi)容在教材中的地位和作用,結(jié)合教材以及學(xué)生的年齡特點(diǎn),我制定以下數(shù)學(xué)目標(biāo):1、知識(shí)目標(biāo):使學(xué)生經(jīng)歷探索兩位數(shù)乘兩位數(shù)進(jìn)位筆算方法的過(guò)程,掌握兩位數(shù)乘兩位數(shù)進(jìn)位筆算的基本筆算方法,能正確進(jìn)行計(jì)算。2、能力目標(biāo):學(xué)生在自主探索計(jì)算方法和解決實(shí)際問(wèn)題的過(guò)程中體會(huì)新舊知識(shí)間的聯(lián)系,能主動(dòng)總結(jié)歸納兩位數(shù)乘兩位數(shù)進(jìn)位筆算的方法,培養(yǎng)類比分析概括能力,發(fā)展應(yīng)用意識(shí)。
一、說(shuō)教材《兩位數(shù)加一位數(shù)的進(jìn)位加法》是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書一年級(jí)下冊(cè)P62“兩位數(shù)加一位數(shù)的進(jìn)位加法”,本課是在兩位數(shù)加一位數(shù)和整十?dāng)?shù)的基礎(chǔ)上進(jìn)行教學(xué)的。在本節(jié)課中,通過(guò)生活情境圖,引入兩位數(shù)加一位數(shù)的進(jìn)位加法,并使學(xué)生在解決實(shí)際問(wèn)題的過(guò)程中,進(jìn)一步體會(huì)加法的意義,鼓勵(lì)學(xué)生提出問(wèn)題并解決問(wèn)題,要讓學(xué)生在獨(dú)立思考的基礎(chǔ)上,經(jīng)歷與他人交流的過(guò)程,探索并掌握兩位數(shù)加一位數(shù)進(jìn)位加法的計(jì)算方法,并能正確地計(jì)算,加強(qiáng)動(dòng)手操作,探索計(jì)算方法,體會(huì)算法的多樣性。根據(jù)本節(jié)課在教材中的地位和作用,依據(jù)小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)和孩子們已有的認(rèn)知水平,我把本節(jié)課的教學(xué)目標(biāo)定為:1、知識(shí)與技能在解決實(shí)際問(wèn)題的過(guò)程中,進(jìn)一步體會(huì)加法的意義,探索并掌握兩位數(shù)加一位數(shù)進(jìn)位加法的計(jì)算方法。
(二)創(chuàng)設(shè)情境,探索新知。1、創(chuàng)設(shè)情境,激發(fā)興趣。小白兔和小熊要坐公交車去公園,他們來(lái)到公交公司,先后看到公交公司有一邊說(shuō)一邊課件出示課件,請(qǐng)同學(xué)們仔細(xì)觀察,把你從圖上看到的物品和讀出的數(shù)據(jù)告訴老師和其他同學(xué)。你能根據(jù)這些信息提出不同的數(shù)學(xué)問(wèn)題嗎?再?gòu)耐瑢W(xué)們提出的眾多問(wèn)題中選擇兩個(gè)具有代表性的問(wèn)題來(lái)列式和計(jì)算。課件出示主題圖下列兩個(gè)問(wèn)題:指名說(shuō)出兩個(gè)問(wèn)題的算式分別是什么,明確45 + 30和45 + 3是兩位數(shù)加一位數(shù)和兩位數(shù)加整十?dāng)?shù)的加法算式,引出課題——兩位數(shù)加一位數(shù)和整十?dāng)?shù)(不進(jìn)位)這一層次從學(xué)生熟悉的生活情境出發(fā),選擇學(xué)生熟悉的旅游,讓學(xué)生自己發(fā)現(xiàn)、提出有關(guān)的數(shù)學(xué)問(wèn)題,從而主動(dòng)的解決問(wèn)題。這里通過(guò)創(chuàng)造出生動(dòng)的生活情境來(lái)提取例題,符合學(xué)生的年齡、認(rèn)知特征,既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又使學(xué)生感受到數(shù)學(xué)與生活的密切聯(lián)系,容易為學(xué)生所感知,所接受。
3、教學(xué)目標(biāo)及教學(xué)重點(diǎn)難點(diǎn)根據(jù)課標(biāo)的要求,介于教材的特點(diǎn)和學(xué)生實(shí)際,我確定本節(jié)課的教學(xué)目標(biāo)是:(1)、知識(shí)與技能:讓學(xué)生經(jīng)歷探索兩位數(shù)減一位數(shù)和整十?dāng)?shù)(不退位)的計(jì)算方法的過(guò)程,掌握計(jì)算方法,能正確地口算。(2)、過(guò)程與方法:讓學(xué)生經(jīng)歷自主探索、動(dòng)手操作、合作交流等方式獲得新知的過(guò)程,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),體會(huì)數(shù)學(xué)知識(shí)與日常生活的密切聯(lián)系,增強(qiáng)應(yīng)用意識(shí)。 (3)、情感態(tài)度與價(jià)值觀:進(jìn)一步培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,以及積極思考、動(dòng)手實(shí)踐并與同學(xué)合作學(xué)習(xí)的態(tài)度。其中,掌握兩位數(shù)減一位數(shù)和整十?dāng)?shù)(不退位)的口算方法是重點(diǎn),理解算理,把握兩位數(shù)減一位數(shù)與兩位數(shù)減整十?dāng)?shù)在計(jì)算過(guò)程中的相同點(diǎn)與不同點(diǎn)是難點(diǎn)。
一、說(shuō)教材:本課時(shí)主要的內(nèi)容就是讓學(xué)生在情境中掌握兩位數(shù)加兩位數(shù)的進(jìn)位加法計(jì)算,讓學(xué)生通過(guò)嘗試和探索出多種算法,體驗(yàn)多種算法,然后比較出最好的算法。教學(xué)目標(biāo):1、通過(guò)具體的情境使學(xué)生更一步的理解加法的意義和提高學(xué)生的估算意識(shí)。2、通過(guò)學(xué)生的合作學(xué)習(xí)從而能探討出多種計(jì)算兩位數(shù)減兩位退位減法的方法。3、培養(yǎng)學(xué)生的數(shù)學(xué)口語(yǔ)表達(dá)能力,提高學(xué)生的學(xué)習(xí)興趣。4、掌握兩位數(shù)加兩位數(shù)(進(jìn)位加)豎式的寫法。重點(diǎn):(1)通過(guò)學(xué)生的合作學(xué)習(xí)從而能探討出多種計(jì)算兩位數(shù)減兩位退位減法的方法。(2)掌握筆算加法的計(jì)算法則。難點(diǎn):對(duì)多樣化算法進(jìn)行優(yōu)化,達(dá)到正確完成計(jì)算。發(fā)展學(xué)生的估算意識(shí)、和探究意識(shí)和解決實(shí)際問(wèn)題的能力。二、說(shuō)教法:組織學(xué)生在前面計(jì)算的基礎(chǔ)上,自主探索出兩位數(shù)加兩位(進(jìn)位加)的計(jì)算方法,并通過(guò)交流、討論,達(dá)到對(duì)算法的優(yōu)化,在通過(guò)“試一試”、“算一算”、“想一想”等形式達(dá)到知識(shí)的掌握。
今天我說(shuō)課的內(nèi)容是二年級(jí)上冊(cè)第二單元《100以內(nèi)的加法和減法》的第一課時(shí),兩位數(shù)加兩位數(shù)的不進(jìn)位加法。教材通過(guò)參觀博物館的情境圖引出兩位數(shù)的不進(jìn)位和進(jìn)位加法。本節(jié)課主要解決不進(jìn)位加法豎式計(jì)算中的對(duì)位和計(jì)算順序問(wèn)題。由于本節(jié)課是在學(xué)生已經(jīng)掌握兩位數(shù)加整十?dāng)?shù)、兩位數(shù)加一位數(shù)的基礎(chǔ)上學(xué)習(xí)的內(nèi)容,這堂課的關(guān)鍵是引導(dǎo)學(xué)生運(yùn)用這些已有的知識(shí)經(jīng)驗(yàn),借助位值圖,通過(guò)自己的操作探究、合作學(xué)習(xí),將新知識(shí)轉(zhuǎn)化、納入已有的認(rèn)知結(jié)構(gòu),自主地學(xué)習(xí)兩位數(shù)加兩位數(shù)不進(jìn)位加法的計(jì)算方法。因此本節(jié)課的目標(biāo)確定為:知識(shí)與能力:1、充分利用直觀手段,幫助學(xué)生理解和掌握筆算兩位數(shù)加兩位數(shù)的方法。2、培養(yǎng)學(xué)生觀察、分析、解決問(wèn)題的能力。過(guò)程與方法:運(yùn)用直觀手段,創(chuàng)設(shè)有意義的問(wèn)題情境和游戲活動(dòng)來(lái)組織教學(xué),讓學(xué)生通過(guò)動(dòng)手操作、自主探索、合作交流等方法掌握算法,提高學(xué)習(xí)積極性,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣。
說(shuō)教材:(1)教學(xué)內(nèi)容:人民教育出版社出版的九年義務(wù)教育六年制小學(xué)數(shù)學(xué)教科書第三冊(cè)中的第16—17頁(yè)的例1及“做一做”,練習(xí)三1、2、3、4、題。(2)教材分析(教材的前后聯(lián)系,地位作用及編排意圖):兩位數(shù)減兩位數(shù)是學(xué)生學(xué)習(xí)筆算減法的開始,也是以后學(xué)習(xí)多位筆算減法的基礎(chǔ)。由于筆算減法是在口算減法的基礎(chǔ)上進(jìn)行教學(xué)的,所以教材先安排了口算整十?dāng)?shù)減整十?dāng)?shù)、兩位數(shù)減整十?dāng)?shù)、兩位數(shù)減一位數(shù)的復(fù)習(xí),為理解筆算做好準(zhǔn)備。教材由兩位數(shù)減一位數(shù)的不退位減法口算引出兩位數(shù)減一位數(shù)的不退位減法的筆算。說(shuō)明這種口算題也可以寫成豎式,用筆算。然后,對(duì)照直觀圖說(shuō)明計(jì)算時(shí)要把相同數(shù)位對(duì)齊,從個(gè)位減起的計(jì)算順序。(3)教學(xué)目標(biāo):根據(jù)教材的編排意圖以及學(xué)生的實(shí)際,我確定本課的教學(xué)目標(biāo)是:使學(xué)生理解筆算兩位數(shù)減兩位數(shù)的算理,掌握豎式的寫法和計(jì)算方法,并能正確的筆算。培養(yǎng)學(xué)生知識(shí)遷移的能力和口頭表達(dá)能力,培養(yǎng)學(xué)生仔細(xì)計(jì)算的良好學(xué)習(xí)習(xí)慣。
一、說(shuō)教材1、教學(xué)內(nèi)容本節(jié)課是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材人教版小學(xué)數(shù)學(xué)第三冊(cè)18至19頁(yè)的內(nèi)容。它是在學(xué)生學(xué)習(xí)了20以內(nèi)的退位減法、兩位數(shù)減一位數(shù)和兩位數(shù)減整十?dāng)?shù)以及兩位數(shù)減兩位數(shù)的不退位減法筆算的基礎(chǔ)上學(xué)習(xí)的。它是以后學(xué)習(xí)多位數(shù)減法的重要基礎(chǔ)。2、教學(xué)目標(biāo)(1)、知識(shí)目標(biāo):使學(xué)生在理解算理的基礎(chǔ)上初步掌握兩位數(shù)退位減法的計(jì)算方法,并能正確的進(jìn)行計(jì)算。(2)、技能目標(biāo):培養(yǎng)學(xué)生的動(dòng)手操作能力,發(fā)展學(xué)生的思維和語(yǔ)言表達(dá)能力。(3)、情感目標(biāo):通過(guò)情景的創(chuàng)設(shè),培養(yǎng)學(xué)生的愛(ài)國(guó)之情,同時(shí)讓學(xué)生在自主探索算法的基礎(chǔ)上體驗(yàn)到成功的喜悅。3、教學(xué)重點(diǎn):本節(jié)課的重點(diǎn)是理解筆算兩位數(shù)退位減的算理,能正確用豎式計(jì)算。4、教學(xué)難點(diǎn):理解兩位數(shù)減兩位數(shù)退位減法的算理。
二、說(shuō)教學(xué)目標(biāo)1、結(jié)合具體情境進(jìn)一步理解加減法的意義,能正確口算得數(shù)是百以內(nèi)數(shù)的兩位數(shù)加減法。2、能利用所學(xué)知識(shí),在教師的指導(dǎo)下提出并解決簡(jiǎn)單的實(shí)際問(wèn)題,了解同一問(wèn)題可以用不同的方法解決。3、經(jīng)歷與他人交流各自計(jì)算方法的過(guò)程,體驗(yàn)解決問(wèn)題策略的多樣性,感受學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂(lè)趣。三、說(shuō)教法、學(xué)法教法:為了使學(xué)生掌握好百以內(nèi)的兩位數(shù)加減兩位數(shù)的口算這部分知識(shí),達(dá)到以上教學(xué)目的,突破以上教學(xué)重難點(diǎn),我采用了遷移法、引導(dǎo)法、講解法、聯(lián)系法、自主探索法來(lái)進(jìn)行教學(xué)。學(xué)法:通過(guò)本課的學(xué)習(xí),使學(xué)生學(xué)會(huì)利用舊知構(gòu)建新知的方法、合作探究的方法,調(diào)動(dòng)學(xué)生主動(dòng)探索的積極性。四、說(shuō)教學(xué)過(guò)程(一)創(chuàng)設(shè)情景、導(dǎo)入新課1、談話:同學(xué)們,大千世界無(wú)奇不有。我們所處的人類的社會(huì)是由一個(gè)個(gè)擔(dān)任不同工作的人所組成的,而和我們生活密切相關(guān)的蜜蜂也跟人類一樣,它們生活在一個(gè)蜜蜂王國(guó)里,今天我們就一起到那里了解一下蜜蜂的生活吧。
三、估算度的把握。《標(biāo)準(zhǔn)》在計(jì)算教學(xué)方面強(qiáng)調(diào)的內(nèi)容之一是重視估算,培養(yǎng)估算意識(shí)。我們認(rèn)為重視估算,就是對(duì)學(xué)生數(shù)感的培養(yǎng),具體體現(xiàn)在能估計(jì)運(yùn)算的結(jié)果,并對(duì)結(jié)果的合理性作出解釋。本節(jié)課的設(shè)計(jì)就是讓學(xué)生在具體情境中,學(xué)會(huì)兩種估算方法,結(jié)合具體情況作出合理解釋。四、教會(huì)學(xué)生單元整理與復(fù)習(xí)的方法,使學(xué)生終身受益。我們知道授人以漁而非魚的道理。在本節(jié)課中,老師設(shè)計(jì)了引導(dǎo)學(xué)生學(xué)會(huì)整理與復(fù)習(xí)的方法,如:帶著問(wèn)題看書,將算式分類、歸納、總結(jié)出本單元所學(xué)內(nèi)容,計(jì)算方法,注意地方,最后進(jìn)行有針對(duì)性的練習(xí)。如果我們的老師從小就有意識(shí)地對(duì)學(xué)生進(jìn)行學(xué)習(xí)方法的培養(yǎng),學(xué)生將終身受益。我想我們教學(xué)研討活動(dòng)就是為了實(shí)現(xiàn)教育的最高境界:今天的教是為了明天的不教。
說(shuō)教材內(nèi)容:本節(jié)課是小學(xué)數(shù)學(xué)第五冊(cè)第六單元多位數(shù)乘一位數(shù)中的內(nèi)容,筆算乘法是本單元的教學(xué)重點(diǎn)。主要解決的問(wèn)題如下:筆算過(guò)程中從哪一位乘起、怎么進(jìn)位和豎式的書寫格式。例2主要是解決兩位數(shù)乘一位數(shù)、個(gè)位積滿十需向十位進(jìn)位的問(wèn)題。由于學(xué)生是初次學(xué)習(xí)進(jìn)位,例2的數(shù)字較小,主要是方便學(xué)生理解進(jìn)位的道理?!拷虒W(xué)內(nèi)容:多位數(shù)乘一位數(shù)的乘法(進(jìn)位)(書76頁(yè)例2)教學(xué)目標(biāo):1、初步掌握因數(shù)是一位數(shù)的進(jìn)位乘法的算法。2、正確、熟練地進(jìn)行計(jì)算?!菊f(shuō)教學(xué)目標(biāo):這節(jié)課是學(xué)會(huì)了筆算豎式以及算理的基礎(chǔ)上進(jìn)行教學(xué)的,教學(xué)目標(biāo)主要有:理解進(jìn)位的道理,掌握多位數(shù)乘一位數(shù)的計(jì)算方法;能正確、熟練的計(jì)算?!拷虒W(xué)重點(diǎn):正確計(jì)算兩、三位數(shù)乘一位數(shù)(進(jìn)位)。教學(xué)過(guò)程:一、揭示課題:多位數(shù)乘一位數(shù)的筆算乘法(進(jìn)位)
3、做練習(xí)十六第4題我用創(chuàng)設(shè)情境導(dǎo)入,接著讓學(xué)生用豎式計(jì)算,并提問(wèn)2是哪來(lái)的。創(chuàng)設(shè)情境,激發(fā)學(xué)生興趣,使他們積極思考,主動(dòng)參與,活躍課堂氣氛,輕輕輕松做數(shù)學(xué)。4、判斷題。讓學(xué)生判斷是對(duì)還是錯(cuò),并說(shuō)錯(cuò)在哪并改正。通過(guò)判斷,加深學(xué)生對(duì)用豎式乘法的認(rèn)識(shí)。5、做拼圖題。全班合作把題完成。這道題我設(shè)計(jì)題的下面有天安門前美麗的景色。和前面文昌重建家圓相呼應(yīng)。構(gòu)成一個(gè)完整現(xiàn)實(shí)情境。通過(guò)全班合作培養(yǎng)學(xué)生的合作意識(shí)。四、課堂小結(jié)第四環(huán)節(jié):總結(jié)歸納讓學(xué)生說(shuō)說(shuō)今天學(xué)到了什么?在學(xué)生總結(jié)的同時(shí),教師用規(guī)范的語(yǔ)言復(fù)述筆算乘法的計(jì)算的方法1、相同數(shù)位要對(duì)齊,2、從個(gè)位乘起,3、乘到哪一位上積就寫在那一位上。使學(xué)生對(duì)所學(xué)知識(shí)有一個(gè)清晰的結(jié)構(gòu)。課堂是富有生命的,說(shuō)課設(shè)計(jì)畢竟不是現(xiàn)場(chǎng)上課,所以面對(duì)課堂上的生成我們還需要作出靈活的應(yīng)對(duì),我想這才是我們最大的挑戰(zhàn)。