結(jié)合我們學(xué)校的教學(xué)條件和我自身會(huì)彈琴的優(yōu)勢(shì),我還設(shè)計(jì)了課堂彈奏活動(dòng),激勵(lì)學(xué)生練習(xí)好了參加圣誕聯(lián)歡晚會(huì)給大家表演節(jié)目。 我把第一段的樂(lè)譜進(jìn)行了簡(jiǎn)化節(jié)奏讓學(xué)生彈奏,在彈奏基本完成后還設(shè)計(jì)了學(xué)生邊唱邊彈,并且分組讓學(xué)生用電子琴自帶的的打擊樂(lè)器進(jìn)行合奏練習(xí),讓學(xué)生在學(xué)唱的同時(shí)更加深入的體會(huì)音樂(lè)歡快活潑的節(jié)奏特點(diǎn),同時(shí)讓學(xué)生感受合奏的整體的音響效果,培養(yǎng)了學(xué)生的動(dòng)手能力和集體合作能力。 六、總結(jié) 本課以歌曲《鈴兒響叮當(dāng)》為主要內(nèi)容,聽(tīng)、唱、彈等教學(xué)環(huán)節(jié)都圍繞他展開(kāi),各教學(xué)環(huán)節(jié)的設(shè)計(jì)易于統(tǒng)一,各項(xiàng)活動(dòng)的設(shè)計(jì)均以音樂(lè)審美為核心,教學(xué)中關(guān)注段落的劃分,注重引導(dǎo)學(xué)生的參與,體驗(yàn),引導(dǎo)學(xué)生積極探索創(chuàng)造學(xué)習(xí),展現(xiàn)音樂(lè)的節(jié)奏之美。
5. 跟著范唱,完整地唱好全歌7. .以自豪的情感跟著伴奏帶唱好京歌《我是中國(guó)人》。(音樂(lè)教育以審美為核心,主要作用于人的情感世界,使學(xué)生充分體驗(yàn)蘊(yùn)涵于音樂(lè)音響形式中的美和豐富的情感,為音樂(lè)所表達(dá)的真善美理想境界所吸引、所陶醉,與之產(chǎn)生強(qiáng)烈的情感共鳴,使音樂(lè)藝術(shù)凈化心靈、陶冶情操,以利于學(xué)生養(yǎng)成健康、高尚的審美情趣和積極樂(lè)觀(guān)的生活態(tài)度。)8.鼓勵(lì)學(xué)生單獨(dú)演唱,師生共同評(píng)價(jià),鍛煉學(xué)生能夠?qū)ψ约汉退说难莩骱?jiǎn)單評(píng)價(jià)。三、表演唱。因?yàn)閼蚋韬蛻蚯欠植婚_(kāi)得,所以我向?qū)W生講解戲曲中跑圓場(chǎng)這個(gè)動(dòng)作,并輔導(dǎo)學(xué)生表演,用于歌曲的前奏。作為本科知識(shí)的延續(xù),拓展學(xué)生的知識(shí)面,用戲歌作為學(xué)生走進(jìn)戲曲的敲門(mén)磚。最后教師提出希望,鼓勵(lì)學(xué)生從唱戲歌開(kāi)始,慢慢地去了解戲曲,學(xué)習(xí)戲曲,敲開(kāi)戲曲藝術(shù)的大門(mén)。
2、學(xué)生模仿,解決切分節(jié)奏。起 飛 落3、師:在世界音樂(lè)的五彩天空里,飛翔著一只美麗的“鴿子”,這就是那首著名的美國(guó)歌曲《白蘭鴿》。這首歌曲誕生于20世紀(jì),旋律優(yōu)美動(dòng)聽(tīng),多少年來(lái),一直被世界各國(guó)的人們喜愛(ài)和傳唱。欣賞《白蘭鴿》4、聽(tīng)了歌曲你感受到了什么?5、再次欣賞歌曲,學(xué)生跟師一起用動(dòng)作表現(xiàn)鴿子的形象。6、學(xué)習(xí)歌曲①學(xué)生跟琴用LU輕聲哼唱旋律②出示歌譜,請(qǐng)學(xué)生仔細(xì)觀(guān)察哪些地方是相同的?哪些地方是不同的?用色塊表現(xiàn)出相同和不同?③跟琴學(xué)唱歌曲。④完整熟練地演唱歌曲。7、用自制的樂(lè)器為歌曲伴奏請(qǐng)學(xué)生自由設(shè)計(jì)伴奏型,師從旁指導(dǎo)。為歌曲伴奏。(三)拓展欣賞英文版的《白蘭鴿》(四)課堂小結(jié)以上就是小學(xué)五年級(jí)音樂(lè)致春天說(shuō)課稿全部?jī)?nèi)容供家長(zhǎng)參考,祝能夠進(jìn)入是適合的學(xué)校!
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個(gè)95)影響較大,使平均數(shù)在估計(jì)總體時(shí)可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來(lái)估計(jì)每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計(jì)樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點(diǎn);(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個(gè)小矩形的面積與小矩形底邊中點(diǎn)的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識(shí)點(diǎn),教師補(bǔ)充。 讓學(xué)生掌握本節(jié)課知識(shí)點(diǎn),并能夠靈活運(yùn)用。
問(wèn)題二:上述問(wèn)題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績(jī)存在差異,那么,如何度量這種差異呢?我們可以利用極差進(jìn)行度量。根據(jù)上述數(shù)據(jù)計(jì)算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫(huà)了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績(jī)波動(dòng)范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個(gè)值的信息,所含的信息量很少。也就是說(shuō),極差度量出的差異誤差較大。問(wèn)題三:你還能想出其他刻畫(huà)數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績(jī)很穩(wěn)定,那么大多數(shù)的射擊成績(jī)離平均成績(jī)不會(huì)太遠(yuǎn);相反,如果射擊的成績(jī)波動(dòng)幅度很大,那么大多數(shù)的射擊成績(jī)離平均成績(jī)會(huì)比較遠(yuǎn)。因此,我們可以通過(guò)這兩組射擊成績(jī)與它們的平均成績(jī)的“平均距離”來(lái)度量成績(jī)的波動(dòng)幅度。
可以通過(guò)下面的步驟計(jì)算一組n個(gè)數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計(jì)算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項(xiàng)數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項(xiàng)與第i+1項(xiàng)的平均數(shù)。我們?cè)诔踔袑W(xué)過(guò)的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實(shí)際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個(gè)分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱(chēng)為四分位數(shù)。其中第25百分位數(shù)也稱(chēng)為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱(chēng)為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計(jì)中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計(jì)樹(shù)人中學(xué)高一年級(jí)女生第25,50,75百分位數(shù)。
新知探究我們知道,等差數(shù)列的特征是“從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)” 。類(lèi)比等差數(shù)列的研究思路和方法,從運(yùn)算的角度出發(fā),你覺(jué)得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時(shí)期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬(wàn)世不竭.”如果把“一尺之錘”的長(zhǎng)度看成單位“1”,那么從第1天開(kāi)始,每天得到的“錘”的長(zhǎng)度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營(yíng)養(yǎng)和生存空間沒(méi)有限制的情況下,某種細(xì)菌每20 min 就通過(guò)分裂繁殖一代,那么一個(gè)這種細(xì)菌從第1次分裂開(kāi)始,各次分裂產(chǎn)生的后代個(gè)數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
導(dǎo)語(yǔ)在必修第一冊(cè)中,我們研究了函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性等知識(shí),定性的研究了一次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)增長(zhǎng)速度的差異,知道“對(duì)數(shù)增長(zhǎng)” 是越來(lái)越慢的,“指數(shù)爆炸” 比“直線(xiàn)上升” 快得多,進(jìn)一步的能否精確定量的刻畫(huà)變化速度的快慢呢,下面我們就來(lái)研究這個(gè)問(wèn)題。新知探究問(wèn)題1 高臺(tái)跳水運(yùn)動(dòng)員的速度高臺(tái)跳水運(yùn)動(dòng)中,運(yùn)動(dòng)員在運(yùn)動(dòng)過(guò)程中的重心相對(duì)于水面的高度h(單位:m)與起跳后的時(shí)間t(單位:s)存在函數(shù)關(guān)系h(t)=-4.9t2+4.8t+11.如何描述用運(yùn)動(dòng)員從起跳到入水的過(guò)程中運(yùn)動(dòng)的快慢程度呢?直覺(jué)告訴我們,運(yùn)動(dòng)員從起跳到入水的過(guò)程中,在上升階段運(yùn)動(dòng)的越來(lái)越慢,在下降階段運(yùn)動(dòng)的越來(lái)越快,我們可以把整個(gè)運(yùn)動(dòng)時(shí)間段分成許多小段,用運(yùn)動(dòng)員在每段時(shí)間內(nèi)的平均速度v ?近似的描述它的運(yùn)動(dòng)狀態(tài)。
求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運(yùn)算特點(diǎn),即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)數(shù);(2)對(duì)于三個(gè)以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個(gè)”函數(shù)的積、商的導(dǎo)數(shù)計(jì)算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過(guò)凈化的,隨著水的純凈度的提高,所需進(jìn)化費(fèi)用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費(fèi)用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時(shí),所需進(jìn)化費(fèi)用的瞬時(shí)變化率:(1) 90% ;(2) 98%解:凈化費(fèi)用的瞬時(shí)變化率就是凈化費(fèi)用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
情景導(dǎo)學(xué)古語(yǔ)云:“勤學(xué)如春起之苗,不見(jiàn)其增,日有所長(zhǎng)”如果對(duì)“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個(gè)數(shù)列. 那么什么叫數(shù)列呢?二、問(wèn)題探究1. 王芳從一歲到17歲,每年生日那天測(cè)量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時(shí)的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號(hào)K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個(gè)月中從第1天到第15天,每天月亮可見(jiàn)部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
1.判斷正誤(正確的打“√”,錯(cuò)誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線(xiàn)越“陡峭”. ( )(3)函數(shù)在某個(gè)區(qū)間上變化越快,函數(shù)在這個(gè)區(qū)間上導(dǎo)數(shù)的絕對(duì)值越大.( )(4)判斷函數(shù)單調(diào)性時(shí),在區(qū)間內(nèi)的個(gè)別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減,故正確.(2)× 切線(xiàn)的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯(cuò)誤.(3)√ 函數(shù)在某個(gè)區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對(duì)值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
一、定義: ,這一公式表示的定理叫做二項(xiàng)式定理,其中公式右邊的多項(xiàng)式叫做的二項(xiàng)展開(kāi)式;上述二項(xiàng)展開(kāi)式中各項(xiàng)的系數(shù) 叫做二項(xiàng)式系數(shù),第項(xiàng)叫做二項(xiàng)展開(kāi)式的通項(xiàng),用表示;叫做二項(xiàng)展開(kāi)式的通項(xiàng)公式.二、二項(xiàng)展開(kāi)式的特點(diǎn)與功能1. 二項(xiàng)展開(kāi)式的特點(diǎn)項(xiàng)數(shù):二項(xiàng)展開(kāi)式共(二項(xiàng)式的指數(shù)+1)項(xiàng);指數(shù):二項(xiàng)展開(kāi)式各項(xiàng)的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項(xiàng)式系數(shù)的下標(biāo)與上標(biāo)的差),第二字母依次升冪(其冪指數(shù)等于二項(xiàng)式系數(shù)的上標(biāo)),并且每一項(xiàng)中兩個(gè)字母的系數(shù)之和均等于二項(xiàng)式的指數(shù);系數(shù):各項(xiàng)的二項(xiàng)式系數(shù)下標(biāo)等于二項(xiàng)式指數(shù);上標(biāo)等于該項(xiàng)的項(xiàng)數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項(xiàng)展開(kāi)式的功能注意到二項(xiàng)展開(kāi)式的各項(xiàng)均含有不同的組合數(shù),若賦予a,b不同的取值,則二項(xiàng)式展開(kāi)式演變成一個(gè)組合恒等式.因此,揭示二項(xiàng)式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項(xiàng)式問(wèn)題的原始依據(jù).又注意到在的二項(xiàng)展開(kāi)式中,若將各項(xiàng)中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見(jiàn)展開(kāi)式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問(wèn)題,二項(xiàng)式公式也是不可或缺的理論依據(jù).
二、典例解析例4. 用 10 000元購(gòu)買(mǎi)某個(gè)理財(cái)產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計(jì)息,12個(gè)月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計(jì)息,存4個(gè)季度,則當(dāng)每季度利率為多少時(shí),按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計(jì)算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開(kāi)始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢(qián)存 n 個(gè)月以后的本利和組成一個(gè)數(shù)列{a_n },則{a_n }是等比數(shù)列,首項(xiàng)a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個(gè)月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢(qián)存 n 個(gè)季度以后的本利和組成一個(gè)數(shù)列{b_n },則{b_n }也是一個(gè)等比數(shù)列,首項(xiàng) b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們?cè)诶斫饬撕瘮?shù)的一般概念,了解了函數(shù)變化規(guī)律的研究?jī)?nèi)容(如單調(diào)性,奇偶性等)后,通過(guò)研究基本初等函數(shù)不僅加深了對(duì)函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類(lèi)似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項(xiàng)公式和前n項(xiàng)和公式,并應(yīng)用它們解決實(shí)際問(wèn)題和數(shù)學(xué)問(wèn)題,從中感受數(shù)學(xué)模型的現(xiàn)實(shí)意義與應(yīng)用,下面,我們從一類(lèi)取值規(guī)律比較簡(jiǎn)單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號(hào)的女裝上對(duì)應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測(cè)量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
二、典例解析例3.某公司購(gòu)置了一臺(tái)價(jià)值為220萬(wàn)元的設(shè)備,隨著設(shè)備在使用過(guò)程中老化,其價(jià)值會(huì)逐年減少.經(jīng)驗(yàn)表明,每經(jīng)過(guò)一年其價(jià)值會(huì)減少d(d為正常數(shù))萬(wàn)元.已知這臺(tái)設(shè)備的使用年限為10年,超過(guò)10年 ,它的價(jià)值將低于購(gòu)進(jìn)價(jià)值的5%,設(shè)備將報(bào)廢.請(qǐng)確定d的范圍.分析:該設(shè)備使用n年后的價(jià)值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價(jià)值不小于(220×5%=)11萬(wàn)元;10年后,該設(shè)備的價(jià)值需小于11萬(wàn)元.利用{an}的通項(xiàng)公式列不等式求解.解:設(shè)使用n年后,這臺(tái)設(shè)備的價(jià)值為an萬(wàn)元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個(gè)公差為-d的等差數(shù)列.因?yàn)閍1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9
1.對(duì)稱(chēng)性與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時(shí),C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時(shí),中間的一項(xiàng)C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時(shí),中間的兩項(xiàng)C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時(shí)取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項(xiàng)式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開(kāi)式的各二項(xiàng)式系數(shù)之和為2^n1. 在(a+b)8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 ,在(a+b)9的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 . 解析:因?yàn)?a+b)8的展開(kāi)式中有9項(xiàng),所以中間一項(xiàng)的二項(xiàng)式系數(shù)最大,該項(xiàng)為C_8^4a4b4=70a4b4.因?yàn)?a+b)9的展開(kāi)式中有10項(xiàng),所以中間兩項(xiàng)的二項(xiàng)式系數(shù)最大,這兩項(xiàng)分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
Step 3 Analyzing article structureActivity 31. Teachers raise questions to guide students to analyze the chapter structure of this diary and think about how to describe the festival experience. (1)What should be included in the opening/body/closing paragraph(s)?(2)How did the writer arrange his/her ideas?(3)What kind of interesting details did the writer describe?(4)How did the writer describe his/her feelings/emotions during the event?2. Students read and compare the three sentence patterns in activity 2. Try to rewrite the first paragraph of the diary with these three sentence patterns. After that, students exchange corrections with their partners. Such as:●This was my first time spending three days experiencing the Naadam Festival in China’s Inner Mongolia Autonomous Region and it was an enjoyable and exciting experience. ●I'll never forget my experience at the Naadam Festival because it was my first time to watch the exciting Mongolian games of horse racing, wrestling, and archery so closely. ●I'll always remember my first experience at the Naadam Festival in China’s Inner Mongolia Autonomous Region because it was so amazing to spend three days witnessing a grand Mongolian ceremony. Step 4 Accumulation of statementsActivity 41. Ask the students to read the diary again. Look for sentences that express feelings and emotions, especially those with the -ing form and the past participle. Such as:● …h(huán)orse racing, wrestling, and archery, which are all so exciting to watch. ● some amazing performances● I was surprised to see…● I was a little worried about. . . ● feeling really tiredOther emotional statements:●I absolutely enjoyed the archery, too, but the horse races were my favourite part. ●I'm finally back home now, feeling really tired, but celebrating Naadam with my friend was totally worth it. ●He invited me back for the winter to stay in a traditional Mongolian tent and cat hot pot. I can’t wait!2. In addition to the use of the -ing form and the past participle, the teacher should guide the students in the appreciation of these statements, ask them to memorize them, and encourage them to use them reasonably in writing practice.
⑦在我看來(lái), 探索太空是值得的。As far as I am concerned, it is worthwhile to explore the space.Step 10 Writing---draftRecently, students in our class have had heated a discussion on whether space is worth exploring. Students hold different ideas about it.30% of us think space exploration is not worthwhile. They think space is too far away from us and our daily life and is a waste of money. And the money spent on space exploration can be used to solve the earth’s problems such as starvation and pollution.On the other hand,70% think space is worth exploring because we have benefited a lot from it,such as using satellites for communication and weather forecast. What’s more,with further space research,we may solve the population problem by moving to other planets one day. Also,space research will enable us to find new sources to solve the problem of energy shortages on the earth.As far as I am concerned, it is worthwhile to explore the space. Not only can it promote the development of society but also enrich our life. Step 11 Pair workExchange drafts with a partner. Use this checklist to help your partner revise his/her draft.1.Does the writer explain why he/she changed/wanted to change?2.Does the writer tell how the changes have improved or will improve his/her life?3.Is the text well-organised?4.Does the writer use words and expressions to show similarities and differences?5.Are there any grammar or spelling errors?6.Does the writer use correct punctuation?
? Could you offer me some kind of work here?? I don’t want your charity, I just want an honest job.? Careless: I landed in Britain by accident.Step 7:Consolidation.? Find Henry? Roderick and Oliver were I .making a bet when they saw Henry, a poor young man. ? Know Henry? About a month ago, Henry was sailing and later he found himself carried out to sea by a strong wind. Fortunately, he 2.was spotted by a ship. And it was the ship that brought him to 3.England? Offer money to Henry ? Oliver and Roderick gave Henry a letter and told him that there was money in it. They 4.persuaded him to accept it, and made him 5.promise that it wouldn't be opened until 2 o'clock.Step 8:Language pointsa large amount of: a large quantity of; a great deal ofe.g. They bought a large amount of furniture before they moved their new house.make a bet: make an arrangement to risk money, etc. on an event of which the result is doubtful.e.g. We made a bet on the result of the match.permit sb to do something: allow somebody to do somethinge.g. My mother doesn’t permit me to ride in the street after it rained.by accident: as a result of chancee.g. I only found it by accident.stare at: look at somebody or something with the eyes wide open in a fixed gaze( in astonishment, wonder, fear, etc)to be honest: to tell you the truth; to be franke.g. To be honest, I don’t think we have a chance of winning.Step7 Homework:What do you think will happen to Henry? Will the bank-note help him or get him into trouble?
The themes of this part are “Talk about how to become an astronaut” and “Talk about life in space”. As Neil Armstrong said “Mystery creates wonder and wonder is the basis of man’s desire to understand. Space is difficult for human to reach, therefore, humans are full of wonders about it. However, if wanting to achieve the dream of reaching the Moon, some of our human should work hard to be an astronaut at first. Part A(Talk about how to become an astronaut) is a radio interview in a radio studio, where the host asked the Chinese astronauts about his story how to become an astronaut. Yang Liwei told his dreamed to be an astronaut since childhood. Then he worked hard to get into college at 22. The next 10 years, he gradually became an experienced pilot. At the same time, to be an astronaut, he had to study hard English, science and astronomy and trained hard to keep in good physical and mental health and to practise using space equipment. Part B (Talk about life in space) is also an interview with the astronaut Brown, who is back on the earth. The host Max asked about his space life, such as his emotion about going back the earth, the eating, shower, brushing, hobbies and his work. Part A and Part B are interviews. So expressing curiosity about the guests’ past life is a communicative skill, which students should be guided to learn.1. Students can get detailed information about how Yang Liwei became an astronaut and Max’s space life.2. Students learn to proper listening strategy to get detailed information---listening for numbers and taking notes.3. Students can learn related sentences or phrases to express their curiosity like “ I wish to know...” “I’d love to know...”4. Students can learn more about the space and astronauts, even be interested in working hard to be an astronaut