《基本不等式》在人教A版高中數(shù)學第一冊第二章第2節(jié),本節(jié)課的內容是基本不等式的形式以及推導和證明過程。本章一直在研究不等式的相關問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內容也是之后基本不等式應用的必要基礎。課程目標1.掌握基本不等式的形式以及推導過程,會用基本不等式解決簡單問題。2.經歷基本不等式的推導與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學的嚴謹性。數(shù)學學科素養(yǎng)1.數(shù)學抽象:基本不等式的形式以及推導過程;2.邏輯推理:基本不等式的證明;3.數(shù)學運算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實際問題;5.數(shù)學建模:利用函數(shù)的思想和基本不等式解決實際問題,提升學生的邏輯推理能力。重點:基本不等式的形成以及推導過程和利用基本不等式求最值;難點:基本不等式的推導以及證明過程.
本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數(shù)學抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學運算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學思想方法;
《奇偶性》內容選自人教版A版第一冊第三章第三節(jié)第二課時;函數(shù)奇偶性是研究函數(shù)的一個重要策略,因此奇偶性成為函數(shù)的重要性質之一,它的研究也為今后指對函數(shù)、冪函數(shù)、三角函數(shù)的性質等后續(xù)內容的深入起著鋪墊的作用.課程目標1、理解函數(shù)的奇偶性及其幾何意義;2、學會運用函數(shù)圖象理解和研究函數(shù)的性質;3、學會判斷函數(shù)的奇偶性.數(shù)學學科素養(yǎng)1.數(shù)學抽象:用數(shù)學語言表示函數(shù)奇偶性;2.邏輯推理:證明函數(shù)奇偶性;3.數(shù)學運算:運用函數(shù)奇偶性求參數(shù);4.數(shù)據(jù)分析:利用圖像求奇偶函數(shù);5.數(shù)學建模:在具體問題情境中,運用數(shù)形結合思想,利用奇偶性解決實際問題。重點:函數(shù)奇偶性概念的形成和函數(shù)奇偶性的判斷;難點:函數(shù)奇偶性概念的探究與理解.教學方法:以學生為主體,采用誘思探究式教學,精講多練。
一、復習回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關系?【答案】相等(2).角 -α與α的終邊 有何位置關系?【答案】終邊關于x軸對稱(3).角 與α的終邊 有何位置關系?【答案】終邊關于y軸對稱(4).角 與α的終邊 有何位置關系?【答案】終邊關于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學們思考回答點P關于原點、x軸、y軸對稱的三個點的坐標是什么?【答案】點P(x, y)關于原點對稱點P1(-x, -y)點P(x, y)關于x軸對稱點P2(x, -y) 點P(x, y)關于y軸對稱點P3(-x, y)
例7 用描述法表示拋物線y=x2+1上的點構成的集合.【答案】見解析 【解析】 拋物線y=x2+1上的點構成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變設問]本題中點的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實數(shù).變式2.[變條件,變設問]本題中點的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實數(shù).解題技巧(認識集合含義的2個步驟)一看代表元素,是數(shù)集還是點集,二看元素滿足什么條件即有什么公共特性。
本節(jié)主要內容是三角函數(shù)的誘導公式中的公式二至公式六,其推導過程中涉及到對稱變換,充分體現(xiàn)對稱變換思想在數(shù)學中的應用,在練習中加以應用,讓學生進一步體會 的任意性;綜合六組誘導公式總結出記憶誘導公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數(shù)學思想的探究過程,培養(yǎng)學生用聯(lián)系、變化的辯證唯物主義觀點去分析問題的能力。誘導公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學生能熟練的掌握和應用。課程目標1.借助單位圓,推導出正弦、余弦第二、三、四、五、六組的誘導公式,能正確運用誘導公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關三角函數(shù)求值、化簡和恒等式證明問題2.通過公式的應用,了解未知到已知、復雜到簡單的轉化過程,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。
學生在初中學習了 ~ ,但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.因此為了準確描述這些現(xiàn)象,本節(jié)課主要就旋轉度數(shù)和旋轉方向對角的概念進行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉一周回到起始位置,在這個過程中可以得到 ~ 范圍內的角.但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.
本節(jié)通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.能利用已知函數(shù)模型求解實際問題.2.能自建確定性函數(shù)模型解決實際問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:建立函數(shù)模型,把實際應用問題轉化為數(shù)學問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學運算:解答數(shù)學問題,求得結果;4.數(shù)據(jù)分析:把數(shù)學結果轉譯成具體問題的結論,做出解答;5.數(shù)學建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.重點:利用函數(shù)模型解決實際問題;難點:數(shù)模型的構造與對數(shù)據(jù)的處理.
本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》的第五章的4.5.3函數(shù)模型的應用。函數(shù)模型及其應用是中學重要內容之一,又是數(shù)學與生活實踐相互銜接的樞紐,特別在應用意識日益加深的今天,函數(shù)模型的應用實質是揭示了客觀世界中量的相互依存有互有制約的關系,因而函數(shù)模型的應用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學生數(shù)學建模、數(shù)學直觀、數(shù)學抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內容的學習,使學生認識函數(shù)模型的作用,提高學生數(shù)學建模,數(shù)據(jù)分析的能力. a.數(shù)學抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學運算:運用函數(shù)模型解決實際問題;
【教學目標】知識目標:理解直線的點斜式方程、斜截式方程、橫截距、縱截距的概念;掌握直線的點斜式方程、斜截式方程的確定.能力目標:通過求解直線的點斜式方程和斜截式方程,培養(yǎng)學生的數(shù)學思維能力與數(shù)形結合的數(shù)學思想.情感目標:通過學習直線的點斜式方程和斜截式方程,體會數(shù)形結合的直觀感受.【教學重點】直線的點斜式方程、斜截式方程的確定.【教學難點】直線的點斜式方程、斜截式方程的確定.
【教學重點】直線的點斜式方程、斜截式方程的確定.【教學難點】直線的點斜式方程、斜截式方程的確定.【教學過程】1、對特殊三角函數(shù)進行鞏固復習;表1 內特殊三角函數(shù)值 不存在圖1 特殊三角形2、鞏固復習直線的傾斜角和斜率相關內容;直線的傾斜角:,;直線的斜率: , ;設點為直線l上的任意兩點,當時,
1.確定研究對象,明確哪個是解釋變量,哪個是響應變量;2.由經驗確定非線性經驗回歸方程的模型;3.通過變換,將非線性經驗回歸模型轉化為線性經驗回歸模型;4.按照公式計算經驗回歸方程中的參數(shù),得到經驗回歸方程;5.消去新元,得到非線性經驗回歸方程;6.得出結果后分析殘差圖是否有異常 .跟蹤訓練1.一只藥用昆蟲的產卵數(shù)y與一定范圍內的溫度x有關,現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關于x回歸方程為 且相關指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預測溫度為35℃時該種藥用昆蟲的產卵數(shù).(結果取整數(shù)).
一、 問題導學前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀錄和創(chuàng)紀錄的時間等,都是數(shù)值變量,數(shù)值變量的取值為實數(shù).其大小和運算都有實際含義.在現(xiàn)實生活中,人們經常需要回答一定范圍內的兩種現(xiàn)象或性質之間是否存在關聯(lián)性或相互影響的問題.例如,就讀不同學校是否對學生的成績有影響,不同班級學生用于體育鍛煉的時間是否有差別,吸煙是否會增加患肺癌的風險,等等,本節(jié)將要學習的獨立性檢驗方法為我們提供了解決這類問題的方案。在討論上述問題時,為了表述方便,我們經常會使用一種特殊的隨機變量,以區(qū)別不同的現(xiàn)象或性質,這類隨機變量稱為分類變量.分類變量的取值可以用實數(shù)表示,例如,學生所在的班級可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時候,這些數(shù)值只作為編號使用,并沒有通常的大小和運算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關聯(lián)性問題.
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關系(充分、必要、充要條件)轉化為集合間的關系,(3)利用集合間的關系建立不等關系,(4)求解參數(shù)范圍.跟蹤訓練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結讓學生總結本節(jié)課所學主要知識及解題技巧
本課是高中數(shù)學第一章第4節(jié),充要條件是中學數(shù)學中最重要的數(shù)學概念之一, 它主要討論了命題的條件與結論之間的邏輯關系,目的是為今后的數(shù)學學習特別是數(shù)學推理的學習打下基礎。從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們去解決具體問題則更為困難,因此”充要條件”的教學成為中學數(shù)學的難點之一,而必要條件的定義又是本節(jié)內容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學習,使學生明白對條件的判定應該歸結為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學生思維能力的嚴密性品質.
新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細菌每20 min 就通過分裂繁殖一代,那么一個這種細菌從第1次分裂開始,各次分裂產生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復利,他5年內每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
求函數(shù)的導數(shù)的策略(1)先區(qū)分函數(shù)的運算特點,即函數(shù)的和、差、積、商,再根據(jù)導數(shù)的運算法則求導數(shù);(2)對于三個以上函數(shù)的積、商的導數(shù),依次轉化為“兩個”函數(shù)的積、商的導數(shù)計算.跟蹤訓練1 求下列函數(shù)的導數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓練2 求下列函數(shù)的導數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經過凈化的,隨著水的純凈度的提高,所需進化費用不斷增加,已知將1t水進化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進化到下列純凈度時,所需進化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
新知探究前面我們研究了兩類變化率問題:一類是物理學中的問題,涉及平均速度和瞬時速度;另一類是幾何學中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學科領域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設自變量x從x_0變化到x_0+ ?x ,相應地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導數(shù)的概念如果當Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導數(shù)(也稱為__________),記作f ′(x0)或________,即
二、典例解析例4. 用 10 000元購買某個理財產品一年.(1)若以月利率0.400%的復利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復利計息,存4個季度,則當每季度利率為多少時,按季結算的利息不少于按月結算的利息(精確到10^(-5))?分析:復利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構成等比數(shù)列.解:(1)設這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內容(如單調性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應用它們解決實際問題和數(shù)學問題,從中感受數(shù)學模型的現(xiàn)實意義與應用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③