1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
1.培養(yǎng)學(xué)習(xí)語文的興趣,感悟生活處處皆語文的道理。2.了解招牌、廣告詞和對聯(lián)。3.按興趣分組,制定活動計劃。 一、導(dǎo)入新課師:同學(xué)們,我們學(xué)習(xí)語文都有哪些途徑呢?(生:課本、課堂。)除此之外,老師認為還可以通過以下途徑來學(xué)習(xí)語文。從媒體中學(xué)語文——網(wǎng)絡(luò)用語、手機短信、歌詞等;從名字中學(xué)語文——人名、地名等;向群眾學(xué)語文——俗語、諺語、歇后語等;從傳統(tǒng)文化中學(xué)語文——對聯(lián)……從廣告中學(xué)語文——商業(yè)廣告、公益廣告…… 師:無論是讀書看報、與人聊天,還是聽相聲、看電視、逛商場,只要留心觀察,隨時注意語言現(xiàn)象,總會發(fā)現(xiàn)與語文有關(guān)的問題。書本上、電視上、報紙上滿是漢字。大街上的招牌、廣告、門對等全都充滿語文氣息。語文學(xué)習(xí)不能局限于課堂與書本,生活處處有語文。今天,我們就來開展綜合性學(xué)習(xí)活動“我的語文生活”,看看怎樣在生活中學(xué)習(xí)語文。
一、教材分析《3的倍數(shù)的特征》是人教版實驗教材小學(xué)數(shù)學(xué)五年級下冊第19頁的內(nèi)容,它是在因數(shù)和倍數(shù)的基礎(chǔ)上進行教學(xué)的,是求最大公因數(shù)、最小公倍數(shù)的重要基礎(chǔ),也是學(xué)習(xí)約分和通分的必要前提。因此,使學(xué)生熟練地掌握2、5、3的倍數(shù)的特征,具有十分重要的意義。教材的安排是先教學(xué)2、5的倍數(shù)的特征,再教學(xué)3的倍數(shù)的特征。因為2、5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判定,必須把其各位上的數(shù)相加,看所得的和是否是3的倍數(shù)來判定,學(xué)生理解起來有一定的困難,因此,本課的教學(xué)目標,我從知識、能力、情感三方面綜合考慮,確定教學(xué)目標如下:1、使學(xué)生通過理解和掌握3的倍數(shù)的特征,并且能熟練地去判斷一個數(shù)是否是3的倍數(shù),以培養(yǎng)學(xué)生觀察、分析、動手操作及概括問題的能力,進一步發(fā)展學(xué)生的數(shù)感。
不足之處是: 1 、在如何有效地組織學(xué)生開展探索規(guī)律時,我認為猜想可以鍛煉孩子們的創(chuàng)新思維,但猜想必須具有一定的基礎(chǔ),需要因勢利導(dǎo)。在開展探索規(guī)律時,我先組織讓學(xué)生猜想秘訣是什么?由于學(xué)生缺乏猜想的依據(jù),因此,他們的思維不夠活躍,甚至有的學(xué)生在 “亂猜 ”。這說明學(xué)生缺乏猜想的方向和思維的空間,也是教師在組織教學(xué)時需要考慮的問題。 2 、總怕學(xué)生在這節(jié)課里不能很好的接受知識,所以在個別應(yīng)放手的地方卻還在牽著學(xué)生走??偨Y(jié)性的語言也顯得有些羅嗦。 3 、課堂上學(xué)生參與學(xué)習(xí)的程度差異很明顯的:一部分學(xué)生爭先恐后地應(yīng)答,表現(xiàn)得很出眾,很活躍;但更多的學(xué)生或缺乏勇氣,或不善言辭,或沒有機會,而淪為聽眾或觀眾。 4 、本節(jié)課在教學(xué)評價方式上略顯單一。對學(xué)生的評價少,激勵性的語言不夠。
教學(xué)目標1、通過教學(xué),學(xué)生懂得應(yīng)用加法運算定律可以使一些分數(shù)計算簡便,會進行分數(shù)加法的簡便計算.2、培養(yǎng)學(xué)生仔細、認真的學(xué)習(xí)習(xí)慣.3、培養(yǎng)學(xué)生觀察、演繹推理的能力.教學(xué)重點整數(shù)加法運算定律在分數(shù)加法中的應(yīng)用,并使一些分數(shù)加法計算簡便.教學(xué)難點整數(shù)加法運算定律在分數(shù)加法中的應(yīng)用,并使一些分數(shù)加法計算簡便.教學(xué)過程設(shè)計一、復(fù)習(xí)準備(演示課件:整數(shù)加法運算定律推廣到分數(shù)加法)下載1.教師:整數(shù)加法的運算定律有哪幾個?用字母怎樣表示?板書:a+b=b+a(a+b)+c=a+(b+c)2.下面各等式應(yīng)用了什么運算定律?①25+36=36+25 ②(17+28)+72=17+(28+72)③6.2+2.3=2.3+6.2 ④(0.5+1.6)+8.4=0.5+(1.6+8.4)教師:加法交換律和結(jié)合律適用于整數(shù)和小數(shù),是否也適用于分數(shù)加法呢?這節(jié)課我們就一起來研究.二、學(xué)習(xí)新課(繼續(xù)演示課件:整數(shù)加法運算定律推廣到分數(shù)加法)下載1.出示:下面每組算式的左右兩邊有什么關(guān)系?
1、同學(xué)們都聽說過“曹沖稱象”的故事吧!曹沖是怎么稱出大象的重量的呢?讓我們一起來回顧這一過程。2、曹沖是把大象的重量轉(zhuǎn)換成了什么的重量呢?【他是把大象的重量轉(zhuǎn)換成了與它重量相等的石頭的重量】因為當(dāng)時沒有那么大的稱能直接稱出大象的重量,所以曹沖就用石頭的重量代換了大象的重量,稱出了石頭的重量也就知道了大象的重量。3、同學(xué)們,你們大概還不知道吧,曹沖確實非常了不起,他運用了一種重要的數(shù)學(xué)思考方法——等量代換?!景鍟簲?shù)學(xué)廣角——等量代換】這節(jié)課我們就來學(xué)習(xí)如何用“等量代換”的方法解決問題。二、引導(dǎo)探究發(fā)現(xiàn)規(guī)律1、今天這節(jié)課,老師給同學(xué)們帶來了神秘的禮物。猜猜,什么樣的孩子能夠得到它們?全班?個大組,哪組的成員在參與過程中積極主動,認真動腦思考,遵章守紀,老師就獎勵這個組一個青蘋果,三個青蘋果可以換一個紅蘋果,兩個紅蘋果可以換取一份神秘的禮物。看看哪個組能得到禮物。有信心嗎?老師相信你們是最棒的。
一、初步感知間隔的含義1、請同學(xué)們伸出右手,張開,數(shù)一數(shù),5個手指之間有幾個空格?在數(shù)學(xué)上,我們把 空格叫做間隔,也就是說,5個手指之間有幾個間隔?4個間隔是在幾個手指之間?2. 其實,這樣的數(shù)學(xué)問題,在我們的生活中,隨處可見。誰能舉幾個這樣的例子3、看圖:在畫面上我們看到春天桃紅柳綠,到處是一派生機勃勃的景象,你們知道嗎?3月12日是什么日子,這一天全國上下到處都在植樹,為保護環(huán)境獻出自己的一份力量。 出示圖:這里從頭到尾栽了幾棵樹,數(shù)一數(shù),它們之間又有幾個間隔呢?你發(fā)現(xiàn)了什么?誰來說一說?同時板書。4、那你能像這樣用一個圖表示出來嗎?請你們選擇一種動手畫一畫吧!5、匯報:畫了8棵樹,他們之間有7個間隔數(shù),9棵樹之間有8個間隔?!?、你發(fā)現(xiàn)植樹棵樹和間隔數(shù)之間有什么規(guī)律呢?(自己先想想,再把你的想法和伙伴們互相交流一下)。反饋:誰來說說你的發(fā)現(xiàn)?評價:哦,這是你的發(fā)現(xiàn)……你還能用一個算式來概括。邊板書邊說:同學(xué)們都發(fā)現(xiàn)了從頭到尾栽一排樹時,植樹棵樹比間隔數(shù)多1,(指表格),也可以寫成兩端要栽時,植樹棵數(shù)-間隔數(shù)+1,間隔數(shù)=植樹棵樹-1。
一、創(chuàng)設(shè)情境,猜想驗證1.猜一猜,摸一摸。一盒粉筆若干支,5種不同的顏色。至少摸幾支能保證:(1)2支同色的。(2)3支同色的。(3)4支同色的。2.想一想,摸一摸。請學(xué)生獨立思考后,先在小組內(nèi)交流自己的想法,再動手操作試一試,驗證各自的猜想。在這個過程中,教師要加強巡視,要注意引導(dǎo)學(xué)生思考本題與前面所講的抽屜原理有沒有聯(lián)系,如果有聯(lián)系,有什么樣的聯(lián)系,應(yīng)該把什么看成抽屜,要分放的東西是什么。二、觀察比較,分析推理1.說一說,在比較中初步感知。2.想一想,在反思中學(xué)習(xí)推理。三、深入探究,溝通聯(lián)系四、對比練習(xí),感悟新知1.說一說。把紅、黃、藍、白四種顏色的球各10個放到一個袋子里。至少取多少個球,可以保證取到兩個顏色相同的球?2.算一算。向東小學(xué)六年級共有370名學(xué)生,其中六(2)班有49名學(xué)生。請問下面兩人說的對嗎?為什么?五、總結(jié)評價六、布置作業(yè)
三、總結(jié)規(guī)律、形成概念通過學(xué)生積極討論,充分調(diào)動了學(xué)生的積極參與學(xué)習(xí),既發(fā)揮了學(xué)生學(xué)習(xí)的主動性,又培養(yǎng)了學(xué)生的發(fā)散性思維,引導(dǎo)學(xué)生總結(jié)出:有的分數(shù)可以化成有限小數(shù),有的分數(shù)不可以化成有限小數(shù),請同學(xué)們再看一看什么樣的分數(shù)可以化成有限小數(shù)?什么樣的分數(shù)不可以化成有限小數(shù)?啟發(fā)學(xué)生從分母的最小公倍數(shù)著手。 最后總結(jié)出:一個最簡分數(shù),如果分母中只含有素因數(shù)2和5,再無其它素因數(shù),那么這個分數(shù)就可以化成有限小數(shù),否則就不能化成有限小數(shù)。 例題2,請把下列小數(shù)化成分數(shù),說說你是怎樣把小數(shù)化成分數(shù)的? 0.06,0.4,1.8,2.45,1.465, 歸納:(學(xué)生為主,教師點撥)1、原來有幾位小數(shù),就在1后面寫幾個零作分母。原來的小數(shù)去掉小數(shù)點作分子。2、小數(shù)化成分數(shù)后,能約分的要約分。常用的因數(shù)是2和5。 對于小數(shù)如何化成分數(shù)的題目,課前了解到學(xué)生在小學(xué)時已學(xué)過把小數(shù)如何化成分數(shù)的方法,因而以學(xué)生練習(xí)為主,加以操練并鞏固,有錯誤的及時糾正。
低年級學(xué)生注意力不易持久。單調(diào)的練習(xí)學(xué)生容易產(chǎn)生厭倦情緒,降低練習(xí)效率。況且對于筆算兩位數(shù)加減兩位數(shù),學(xué)生們掌握得都很熟練了。針對這些,我把整堂課的設(shè)計注重以下幾點:1、設(shè)計生活化的教學(xué)內(nèi)容?!稑藴省分赋觯骸叭巳藢W(xué)有價值的數(shù)學(xué)?!薄坝袃r值”的數(shù)學(xué)應(yīng)該與學(xué)生的現(xiàn)實生活和以往的知識體驗有密切的關(guān)系,是對他們有吸引力、能使他們產(chǎn)生興趣的內(nèi)容。這節(jié)課我的教學(xué)內(nèi)容是筆算。開始時我并沒有直接出示兩位數(shù)加減兩位數(shù)的筆算練習(xí),從舊知到新知。而是試圖從日常生活入手,創(chuàng)設(shè)一個幫助老師選擇買東西的情境,希望通過幫助老師從2種價格不同的電風(fēng)扇和從2種價格不同的洗衣機中各選擇一樣,計算價格,力圖從真實的生活環(huán)境中解決問題,放開手讓他們?nèi)W(xué)。況且用學(xué)生熟悉的,有興趣的,貼近他們現(xiàn)實生活的內(nèi)容進行教學(xué),才能喚起他們的學(xué)習(xí)興趣,調(diào)動學(xué)習(xí)積極性,使學(xué)生感受到生活與數(shù)學(xué)知識是密不可分的,使數(shù)學(xué)課富有濃郁的生活氣息,從而產(chǎn)生學(xué)習(xí)和探求數(shù)學(xué)的動機,主動應(yīng)用數(shù)學(xué)去思考問題、解決問題。
【說教學(xué)目標】根據(jù)教學(xué)大綱和新課程標準要求,這節(jié)課的教學(xué)目標確定為:1、知識與技能:由生活實際出發(fā),讓學(xué)生感受萬以內(nèi)的數(shù)在生活中的應(yīng)用,進一步體會相鄰兩個計數(shù)單位之間的十進關(guān)系。學(xué)會讀寫萬以內(nèi)的數(shù),知道數(shù)的組成,掌握數(shù)位順序表。2、過程與方法:在具體情景中感受大數(shù)的意義,培養(yǎng)學(xué)生的數(shù)感和估計意識;經(jīng)歷觀察、操作及與同伴合作交流等數(shù)學(xué)活動過程,使學(xué)生初步學(xué)會有條理地思考和解決問題。3、情感與態(tài)度:進一步體驗數(shù)學(xué)與人類生活的密切聯(lián)系;在活動中體驗學(xué)習(xí)的成功與快樂,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣和自信心并能正確評價自己和他人。其中認識數(shù)的計數(shù)單位“萬”,會讀寫萬以內(nèi)的數(shù),掌握數(shù)位順序表時這節(jié)課的重點,而熟練地讀寫萬以內(nèi)的數(shù)是難點。
二、說教法在本課的教學(xué)中我力求改變過去重知識、輕能力,重結(jié)果、輕過程,重教法、輕學(xué)法的狀況。樹立以“以學(xué)生發(fā)展為本”、“以學(xué)定教”、“教為學(xué)服務(wù)”的思想。本課的教學(xué)方法有創(chuàng)設(shè)情境法、引導(dǎo)探究法、類比遷移法、歸納總結(jié)法、組織練習(xí)法等。三、說學(xué)法我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而我們要特別重視學(xué)生學(xué)習(xí)方法的培養(yǎng)和指導(dǎo)。本課學(xué)生的學(xué)習(xí)方法主要有:自主發(fā)現(xiàn)法、合作探究法、類比遷移法、歸納總結(jié)法、感知體驗法等。四、說教學(xué)程序課標指出教學(xué)應(yīng)遵循學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律,強調(diào)從學(xué)生已有生活經(jīng)驗出發(fā),將數(shù)學(xué)活動置身于實施的生活背景之中,為他們提供觀察操作、實現(xiàn)的機會。根據(jù)本節(jié)課的教學(xué)內(nèi)容我設(shè)置了如下四大環(huán)節(jié):(一)復(fù)習(xí)舊知、引入新課。
我說課的內(nèi)容是小學(xué)數(shù)學(xué)二年級下冊《1000以內(nèi)數(shù)的認識》,本節(jié)課的教學(xué)時建立在學(xué)生學(xué)習(xí)過百以內(nèi)數(shù)的認識基礎(chǔ)之上的,是學(xué)生對100以內(nèi)數(shù)的認識的延伸和擴展,同時,它有著一個非常重要的地位,就是要為學(xué)習(xí)10000以內(nèi)數(shù)的認識做好鋪墊,因為,1000或10000都是比較大的數(shù),在學(xué)生的認識還很有限的基礎(chǔ)上,如何讓學(xué)生能盡快的建立起大數(shù)的概念和意識,在這里格外重要,對于這一部分內(nèi)容,《小學(xué)數(shù)學(xué)課程標準》中是這樣闡述的:能認、讀、寫萬以內(nèi)的數(shù),會用數(shù)表示物體的個數(shù)或事物的順序和位置,能說出各數(shù)位的名稱,識別各數(shù)位的數(shù)字的意義;結(jié)合現(xiàn)實素材感受大數(shù)的意義,并能進行結(jié)算。根據(jù)這一闡述,我把本課時的教學(xué)目標定義以下幾點:1、學(xué)習(xí)1000以內(nèi)的數(shù),體驗數(shù)的產(chǎn)生和作用。2、會數(shù)1000以內(nèi)的數(shù),認識計數(shù)單位“千”,體會十進關(guān)系。3、讓學(xué)生經(jīng)歷觀察、猜想、操作等數(shù)學(xué)活動過程,結(jié)合現(xiàn)實材料感受大數(shù)的意義,逐漸發(fā)展學(xué)生的數(shù)感。
2、巧妙練習(xí),強化意義《數(shù)學(xué)課程標準》指出:“引導(dǎo)學(xué)生把所學(xué)的數(shù)學(xué)知識應(yīng)用到現(xiàn)實中去,以體會數(shù)學(xué)在現(xiàn)實生活中的應(yīng)用價值?!睘榇?,我設(shè)計如下練習(xí):為1/2這一分數(shù)配圖(課件),教師提出要求:大家看這里有一個分數(shù),你能試著給它配幾幅圖嗎?配出一幅的是達標,兩幅以上的是良好,三幅以上的是優(yōu)秀。借助激勵性的語言,學(xué)生定會躍躍欲試,在優(yōu)美的樂曲中大顯身手??赡軙霈F(xiàn)這樣的作品(課件)。那么同是分數(shù)1/2,為什么會出現(xiàn)這么多不同的作品呢?那是因為學(xué)生假設(shè)的整體不同,也就是單位“1”不同,因此所配出來的圖是不一樣的。(借助為分數(shù)配圖這一環(huán)節(jié),即強化了學(xué)生對分數(shù)意義的理解,又增強了學(xué)習(xí)的趣味性,符合小學(xué)生的心理特征,同時訓(xùn)練學(xué)生的思維,培養(yǎng)了學(xué)生思維的廣闊性,靈活性。
一、 說教學(xué)內(nèi)容教材第75頁例6及練習(xí)十六第1、2、4題。二、 說教材本教材是學(xué)生已經(jīng)掌握1000以內(nèi)數(shù)的讀法、寫法以及10000以內(nèi)數(shù)的認識基礎(chǔ)上進行教學(xué)的。三、 說教學(xué)目標知識能力目標:通過本節(jié)課的學(xué)習(xí),使學(xué)生在已有知識的基礎(chǔ)上,學(xué)會讀寫萬以內(nèi)的數(shù)(中間、末尾有0),且能總結(jié)出讀寫萬以內(nèi)數(shù)的方法。情感目標:讓學(xué)生學(xué)習(xí)用具體的數(shù)描述生活中的事物并與他人交流,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣和自信心,逐步發(fā)展學(xué)生的數(shù)感。四、 說重點、難點重點:學(xué)會讀寫萬以內(nèi)的數(shù)。(末尾、中間有0)難點:學(xué)會讀寫萬以內(nèi)的數(shù)。(末尾、中間有0)五、 說教法用引導(dǎo)、自學(xué)的教學(xué)方法來達到課堂教學(xué)的最佳效果。六、 說學(xué)法我準備在小組合作、小組交流探索方面做重點指導(dǎo),引導(dǎo)學(xué)生怎樣自學(xué),怎樣提高有價值的問題。
4、認識長方體的立體圖。師:(出示課件長方體)你最多能看到這個長方體的幾個面?你看到了哪三個面?哪三個面看不到?(上面、前面、右面)師:我們把所看到的這個長方體根據(jù)透視原理畫下來就是這樣的。(媒體演示) 這就是長方體的立體圖形。師:大家會認了嗎?試一試。師小結(jié):以后,我們要判斷一個物體是不是長方體,要根據(jù)長方體的特征去分析。5、畫長方體師:同學(xué)們都學(xué)得非常認真知道了長方體的特征,那么大家會畫長方體嗎?畫長方體步驟:1、畫一個平行四邊形。2、畫出長方體的高。3、連線。6、 教學(xué)長方體的長、寬、高。 (1)、師:同學(xué)們剛畫出了長方體,那么長方體的長、寬、高有什么特點?師課件展示后,學(xué)生匯報。(2)、大家想不想親手制作一個長方體的框架呢?把你思考的結(jié)果和大家分享分享。生匯報。
正方體的體積=棱長×棱長×棱長用字母a表示棱長,V=a×a×a.也可以寫成a3讀作a的立方.表示3個a相乘.不要誤認為a與3相乘。寫a3時3寫在a的右上角要寫小些.所以正方體的體積公式一般寫成: V=a3(五)、鞏固練習(xí)、運用公式練習(xí)是數(shù)學(xué)中教學(xué)鞏固新知、形成技能、發(fā)展思維、提高學(xué)生分析問題、解決問題能力的有效手段,為了加強學(xué)生的理解,使學(xué)生能正確運用公式.我設(shè)計了多層次的練習(xí)。1、通過讓學(xué)生完成看圖求體積,這樣有助于學(xué)生理解長方體正方體的體積與它的長寬高的關(guān)系,記住長方體的體積計算公式.2、我對安排了四個判斷題,以加深學(xué)生對a的立方的理解和運用。3,解決實際問題,我安排了兩道題目的是讓學(xué)生所學(xué)新知識解決生活中的一些實際問題。
學(xué)生在一年級上冊開始學(xué)習(xí)簡單的分類整理,初步認識了象形統(tǒng)計圖和簡單的統(tǒng)計表。本課繼續(xù)學(xué)習(xí)統(tǒng)計,以整理隨機出現(xiàn)的簡單數(shù)據(jù)為主要內(nèi)容,并把經(jīng)過整理的數(shù)據(jù)填進簡單的統(tǒng)計表。在統(tǒng)計過程中,讓學(xué)生學(xué)到一些比較容易的統(tǒng)計方法,滲透統(tǒng)計的思想和方法,激發(fā)培養(yǎng)學(xué)生的學(xué)習(xí)熱情和信心。三、教學(xué)目標:1、使學(xué)生體驗數(shù)據(jù)的收集、整理、描述和分析的過程,了解統(tǒng)計的意義,會用簡單的方法收集和表現(xiàn)數(shù)據(jù)。2、認識條形統(tǒng)計圖,明確用1格表示5個單位的表現(xiàn)形式,能根據(jù)統(tǒng)計圖提出問題,并初步進行簡單的預(yù)測。3、在學(xué)習(xí)過程中培養(yǎng)學(xué)生的實踐能力與合作意識。四、重點難點教學(xué)重點:使學(xué)生認識條形統(tǒng)計圖,明確可以用一格表示5個單位。教學(xué)難點:引導(dǎo)學(xué)生通過合作討論找到切實可行的解決問題的方法。
活動三:認識正方體的特征,總結(jié)長方體、正方體的關(guān)系(1)學(xué)生用類比法學(xué)習(xí)正方體的特征,并揭示出長方體和正方體的內(nèi)在聯(lián)系,得出:正方體是特殊的長方體。(2)說說生活中哪些物體是長方體、正方體? 開放的學(xué)習(xí)方式,以學(xué)生的自主學(xué)習(xí)為中心,讓學(xué)生通過自身的發(fā)展嘗試總結(jié),驗證,實現(xiàn)知識的“再創(chuàng)造”。比較是認識事物的主要方法之一,特別在幾何體教學(xué)中,運用比較方法,加強形體間的聯(lián)系和區(qū)別,提高識別能力。同時滲透事物普遍聯(lián)系和發(fā)展變化的辯證唯物主義觀。聯(lián)系生活,體現(xiàn)數(shù)學(xué)來源于生活,又應(yīng)用于生活的特點?;顒铀模簩W(xué)以致用智慧屋,包含判斷題、計算題等多種題型的練習(xí),培養(yǎng)學(xué)生展開多向思維,是學(xué)生能夠從不同角度解決問題的基礎(chǔ)。這樣的練習(xí)題,側(cè)重于知識點的落實,鞏固新知。