高斯(Gauss,1777-1855),德國數(shù)學家,近代數(shù)學的奠基者之一. 他在天文學、大地測量學、磁學、光學等領(lǐng)域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標和相等的兩項和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數(shù)數(shù)時, n-1為偶數(shù)
二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復利計息,存4個季度,則當每季度利率為多少時,按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學問題.
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應用它們解決實際問題和數(shù)學問題,從中感受數(shù)學模型的現(xiàn)實意義與應用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
二、典例解析例3.某公司購置了一臺價值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設(shè)備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設(shè)備將報廢.請確定d的范圍.分析:該設(shè)備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價值不小于(220×5%=)11萬元;10年后,該設(shè)備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設(shè)使用n年后,這臺設(shè)備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和
情景導學古語云:“勤學如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀)上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
4.寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機試驗的結(jié)果.(1)一個袋中裝有8個紅球,3個白球,從中任取5個球,其中所含白球的個數(shù)為X.(2)一個袋中有5個同樣大小的黑球,編號為1,2,3,4,5,從中任取3個球,取出的球的最大號碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個紅球贏2元,而每取出一個白球輸1元,以ξ表示贏得的錢數(shù),結(jié)果如何?[解] (1)X可取0,1,2,3.X=0表示取5個球全是紅球;X=1表示取1個白球,4個紅球;X=2表示取2個白球,3個紅球;X=3表示取3個白球,2個紅球.(2)X可取3,4,5.X=3表示取出的球編號為1,2,3;X=4表示取出的球編號為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個球全是紅球;ξ=7表示取1個白球,4個紅球;ξ=4表示取2個白球,3個紅球;ξ=1表示取3個白球,2個紅球.
課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項和為S_n。
一、 問題導學前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀錄和創(chuàng)紀錄的時間等,都是數(shù)值變量,數(shù)值變量的取值為實數(shù).其大小和運算都有實際含義.在現(xiàn)實生活中,人們經(jīng)常需要回答一定范圍內(nèi)的兩種現(xiàn)象或性質(zhì)之間是否存在關(guān)聯(lián)性或相互影響的問題.例如,就讀不同學校是否對學生的成績有影響,不同班級學生用于體育鍛煉的時間是否有差別,吸煙是否會增加患肺癌的風險,等等,本節(jié)將要學習的獨立性檢驗方法為我們提供了解決這類問題的方案。在討論上述問題時,為了表述方便,我們經(jīng)常會使用一種特殊的隨機變量,以區(qū)別不同的現(xiàn)象或性質(zhì),這類隨機變量稱為分類變量.分類變量的取值可以用實數(shù)表示,例如,學生所在的班級可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時候,這些數(shù)值只作為編號使用,并沒有通常的大小和運算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關(guān)聯(lián)性問題.
溫故知新 1.離散型隨機變量的定義可能取值為有限個或可以一一列舉的隨機變量,我們稱為離散型隨機變量.通常用大寫英文字母表示隨機變量,例如X,Y,Z;用小寫英文字母表示隨機變量的取值,例如x,y,z.隨機變量的特點: 試驗之前可以判斷其可能出現(xiàn)的所有值,在試驗之前不可能確定取何值;可以用數(shù)字表示2、隨機變量的分類①離散型隨機變量:X的取值可一、一列出;②連續(xù)型隨機變量:X可以取某個區(qū)間內(nèi)的一切值隨機變量將隨機事件的結(jié)果數(shù)量化.3、古典概型:①試驗中所有可能出現(xiàn)的基本事件只有有限個;②每個基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點數(shù)X有哪些值?取每個值的概率是多少? 因為X取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
一、貫徹兩個文件,實施一項制度: 新學年重點貫徹落實安徽省教育廳教基[20xx]8號文件《關(guān)于全面推進農(nóng)遠工程應用與管理工作的意見》、安徽省歙縣教育局教電〔20xx〕13號文件《關(guān)于印發(fā)〈歙縣貫徹“關(guān)于全面推進農(nóng)遠工程應用與管理工作的意見”實施意見〉的通知》精神,突出“農(nóng)遠”設(shè)備的管理、增配、使用,確保設(shè)備的正常運行,發(fā)揮設(shè)備的教學效益。努力實施《安徽省中小學校現(xiàn)代教育裝備制度》,根據(jù)《安徽省中小學校現(xiàn)代教育裝備制度》要求,結(jié)合我校實際,修改、補充、完善原訂的相關(guān)制度,重點是管理、應用、培訓、考核等制度。使遠程教育體現(xiàn)出規(guī)范化、制度化、效益化。
二、教研活動時間原則上每月一次。各教研組長應根據(jù)本組實際自行確定時間,召集本組全體成員參加,任何人不得無故請假或遲到早退?! ∪?、教研組內(nèi)開展教研活動,必須邀請學校一名中層以上干部參加活動,第次活動必須作好記錄,并由參加活動的領(lǐng)導簽字。各教研組長必須于每月底將教研記載情況交教導室檢查評估,未經(jīng)領(lǐng)導簽字的記載一律無效。
共享實驗收集的信息,分享實驗探究的結(jié)論,體驗收獲的樂趣。 小結(jié)拓展 這節(jié)課由大家感興趣的球類運動和彈弓游戲,提出了功與速度變化關(guān)系的問題,利用倍增思想解決測量對物體做功的問題,使用我們熟悉的器材設(shè)計了探究方案,并進行實驗探究,采用圖像法進行數(shù)據(jù)處理,初步得出W∝V2的關(guān)系。在我們這節(jié)課探究以前,科學家就通過試驗和理論的方法,已經(jīng)總結(jié)出了功與速度變化的定量關(guān)系。人類社會也在社會生活和生產(chǎn)的各個領(lǐng)域予以利用。比如,古代的戰(zhàn)爭武器拋石器、大型弓弩,以及現(xiàn)代飛機彈射系統(tǒng)、還有機器人行走等等,希望同學在今后的學習中注意留心生活中的物理和社會中的物理。 領(lǐng)會總結(jié)。培養(yǎng)概括總結(jié)的能力,進一步鞏固、感悟、提升實驗探究中獲得的思維能力及動手能力。感悟社會中的物理,認識物理學對科技進步以及文化和社會發(fā)展的影響。 列舉學生知道的社會中做功使物體速度變化的例子,增強學生將物理知識應用于生活和生產(chǎn)的意識,培養(yǎng)學生的社會參與意識和對社會負責任的態(tài)度。
6、改錯題出現(xiàn)在練習七中,與以往的要求不同。學生從一年級就已形成先找錯,再改錯習慣。學習了加減法驗算方法后,教材要求用驗算的方法先檢驗是否正確,再改錯。(就是重做一遍)這一教學環(huán)節(jié),對學生來說有一定的難度。個別學生檢驗完后,不是改錯,而是在驗算。教師在巡視時,發(fā)現(xiàn)后,一再強調(diào)檢驗是錯題后,改錯就是重做一遍,可是這一教學環(huán)節(jié),還是留有遺憾。7、當學生達到熟練驗算后,就要實際應用。在備課時,我個人認為教材以表格形式出現(xiàn),目的是與高段應用題驗算有一定區(qū)別(高段應用題驗算要求把未知變已知,把已知變未知.)這里以表格形式出現(xiàn),已知、未知一目了然。通過這一習題的訓練,也為今后的學習打下一定的基礎(chǔ)。在設(shè)計這一教學環(huán)節(jié)時,我設(shè)計了讓學生在掌握驗算的實際應用后,挑選自己喜歡的水果和同組合作訓練??山滩木毩暺叩牡?題已剩不多時間,只好指名說驗算方法。
新課程理念下的數(shù)學學習活動應當是一個生動活潑的、主動的和富有個性的過程。學生要有充分的從事數(shù)學活動的時間和空間,并有機會分享自己和他人的想法與成果。為此,教學時我注意讓每一個學生都積極參與數(shù)學學習活動,關(guān)注學生個性差異,加強師生和生生之間的多向交流,培養(yǎng)學生的合作精神。既注重學生的獨立思考,又注重學生的合作學習。努力做到:學生自己能做的,教師不做;學生自己能說的,教師不說;學生自己能探索出的結(jié)論,教師不教。設(shè)計本節(jié)課時,我主要考慮到以下三點:1、創(chuàng)設(shè)情境,感受驗算的作用。2、提供足夠的探究空間。3、利用情境充分理解除法算式各部分之間的關(guān)系。本課的教學重點是讓學生會用乘法對除法進行驗算,體驗乘法驗算的優(yōu)越性。教學中我緊緊抓住教學重點來突破教學難點。教學環(huán)節(jié)過度自然,知識層層遞進。在課件的輔助下,以形象的畫面調(diào)動了學生探究問題的欲望,在解決問題中引導、啟發(fā)學生總結(jié)出了驗算的方法。
2 工作時無特殊理由不得請假,確有原因需要請假者,須事先向部長請假,并交書面假條,否則以缺曠論處?! ? 所有請假必須事先請假,并寫書面假條。除特殊原因,事后請假一律無效。長時間請假需主席批準 4 學生會成員工作時必須佩戴工作證,否則按缺曠論處。
8、加強對音、體、美、等課程實施的監(jiān)督與檢查,確保上足課節(jié)。9、將學困生轉(zhuǎn)化工作及優(yōu)生培養(yǎng)工作落到實處。提高對學困生的關(guān)注度,加強對學困生的心理輔導及課業(yè)輔導。10、每周一次級部長會,每月一次學科長會,建立教務會議記錄,學科教研、活動記錄,教師上交材料記錄。11、本學期共21周,實際授課17周。五、教學工作配檔表九月1、劃分班級,安排好教師課務,排好課程表。2、參加XX市教研室召開的小學教學教研工作會議3、安排各科教師參加XX市教研室組織的學科研討。4、制定好各種教學、教研工作計劃。5、安排并開展本學期公開課活動。6、印發(fā)各種表冊。7、對小一新生建檔。8、做好十一長假的作業(yè)布置工作十月1、組織學習煙臺市小學教學常規(guī)、課程標準的學習。2、檢查集體備課情況。3、進行書法、口算、口語表達技能比賽。4、積極準備上級的專項教學常規(guī)督導。5、積極打磨XX市學科優(yōu)質(zhì)課。
二、提高后勤隊伍素質(zhì)。為了提高后勤隊伍素質(zhì),本學期按排了廚師上崗培訓,更好地為幼兒服務,另外,為了使幼兒能安全地在幼兒園,門衛(wèi)還將配備保安。除此之外,各部門還將定期組織人員進行業(yè)務培訓,盡潛力抓好后勤人員的思想和業(yè)務工作,不斷改善服務質(zhì)量。三、重視安全教育工作。為進一步做好安全教育工作,加強《寧波市中小學生安全條例》管理,切實加強對安全教育工作的領(lǐng)導,本園將把各項安全工作列入重點議事日程,讓幼兒不斷增加安全意識。另外,還將完善幼兒園管理系統(tǒng),使家園聯(lián)系更方便。幼兒園每一天還務必做好常規(guī)安全工作檢查,以便能及時整改。
一、說教材1、教材的地位和作用《孟德爾的豌豆雜交實驗(一)》這一課題是高中生物必修2第一章第一節(jié)第一部分的內(nèi)容,是學生學習孟德爾的豌豆雜交實驗(二)的基礎(chǔ),也是第二章《減數(shù)分裂與受精作用》這節(jié)知識的重要基礎(chǔ),又并為后續(xù)學習生物變異與生物進化奠基,所以在教材中起到承上啟下的作用。因此從這個地位來看,這部分內(nèi)容不僅是本章的重點,更是整個必修2的重點內(nèi)容。本節(jié)的教學內(nèi)容是按照孟德爾的探索過程由現(xiàn)象到實質(zhì),層層深入地展開的。教材首先介紹了孟德爾的雜交實驗方法和觀察到的實驗現(xiàn)象,接著介紹了孟德爾對實驗現(xiàn)象的分析,然后介紹了對分離現(xiàn)象解釋的驗證,最后歸納總結(jié)出分離定律。在教學內(nèi)容的組織上體現(xiàn)了學科內(nèi)在邏輯性與學生認識規(guī)律的統(tǒng)一。與原教材比較,有了新的突破主要表現(xiàn)在三方面: