讓學生先獨立解決⑴題,再小組交流⑵題的答案,找到解題的方法.2、例2,例3是對平方根概念的鞏固與拓展,在例2中由于學生還不熟于平方根的表示方法,所以應在平方根的概念和±號上加以明確,而例3則要把握平方根概念的本質,根據該數的正負或0來確定其平方根,這部分內容可用板演或展臺展示結果的方式進行,讓學生獨立完成,應給予恰當的評價.3、最后,我又設計了一道辨析題:在做一道求4的平方根的題目時,小明說:“4的平方根是2”,小紅說:“4的平方根是-2”,小強說:“2是4的平方根”小芳說:“-2是4的平方根”,請問他們的說法正確嗎?通過這道題目,使學生在熟悉平方根概念的基礎上更加深理解,同時對以往五種運算中從未出現過的一題兩解的現象作出了解釋,使學生明白了一種整體與局部的關系,再一次突出了重點.
三、說教法和學法:1、說教法:本節(jié)課采用幾何畫板與電子白板相結合的教學手段,使操作過程形象、直觀呈現,以便學生更好的理解。在教學過程中,引導學生去探索,使學生感受到添加輔助線的數學思想,更好地掌握三角形內角和定理的證明及簡單的應用,2、說學法:根據本節(jié)課特點和學生的實際,在教學過程中給學生足夠的時間認真、仔細地動手書寫證明過程,使學生的學習落到實處。同時,培養(yǎng)學生科學的學習方法和自信心。四、說教學過程設計教學過程的設計有:1、問題引入新課:七年級已經學習三角形內角和定理內容。這樣從已經學過的知識引入,符合學生的認知規(guī)律。在拼圖活動中發(fā)展思維的靈活性、創(chuàng)造性,為下一環(huán)節(jié)“說理”證明作好準備,使學生體會到數學來源于實踐,同時對新知識的學習有了期待。
接下來請同學們改造這五個句子,變成“如果??,那么??”句式,其實就是一個語文環(huán)節(jié)中的造句,同學們很活躍,紛紛舉手發(fā)言。課堂檢測練習我用到的是課本221頁習題6.2第1、2題,有個別同學會做錯,做錯點在于對判斷還把握不夠到位,還有少數同學對定義與命題的理解產生混亂。據此,我提出:定義與命題兩個概念該如何區(qū)別?同學們舉手發(fā)言:定義是一個描述性的概念,而命題是判斷一件事情的句子。還有同學說道:定義就是一個“??叫??”的句式,命題就是“如果??那么??”的句式。在教學中,學生對定義與命題的把握還是比較清楚的。大部分學生可以口頭完成導學案設計的題目。能夠迅速的把一個命題轉化成“如果?那么?”的形式.利用疑問句和祈使句的特點,判定不是命題的語句.迅速的掌握情況還是比較可以的。
1.小明調查了班級里20位同學本學期計劃購買課外書的花費情況,并將結果繪制成了下面的統(tǒng)計圖.(1)在這20位同學中,本學期計劃購買課外書的花費的眾數是多少?(2)計算這20位同學計劃購買課外書的平均花費是多少?你是怎么計算的?反思?交流*(3)在上面的問題,如果不知道調查的總人數,你還能求平均數嗎?2.某題(滿分為5分)的得分情況如右圖,計算此題得分的眾數、中位數和平均數?;顒?:自主反饋1.下圖反映了初三(1)班、(2)班的體育成績。(1)不用計算,根據條形統(tǒng)計圖,你能判斷哪個班學生的體育成績好一些嗎?(2)你能從圖中觀察出各班學生體育成績等級的“眾數”嗎?(3)如果依次將不及格、及格、中、良好、優(yōu)秀記為55、65、75、85、95分,分別估算一下,兩個班學生體育成績的平均值大致是多少?算一算,看看你估計的結果怎么樣?*(4)初三(1)班學生體育成績的平均數、中位數和眾數有什么關系?你能說說其中的理由嗎?
學生以小組為單位,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線。讓學生發(fā)現:沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數學解決實際問題的方法:建立數學模型,構圖,計算.意圖:通過學生的合作探究,找到解決“螞蟻怎么走最近”的方法,將曲面最短距離問題轉化為平面最短距離問題并利用勾股定理求解.在活動中體驗數學建摸,培養(yǎng)學生與人合作交流的能力,增強學生探究能力,操作能力,分析能力,發(fā)展空間觀念.3.突破重點、突破難點的策略在教學過程中教師應通過情景創(chuàng)設,激發(fā)興趣,鼓勵引導學生經歷探索過程,得出結論,從而發(fā)展學生的數學應用能力,提高學生解決實際問題的能力.
探究活動二的安排,是要讓學生明確只靠實驗得出的結論,可能會以點帶面,從而進一步說明學習推理的必要性。并小結出:如果要判斷一個結論不正確只要舉一個反例就可以了。探究活動三的安排是說明只靠實驗得出的結論也不可靠,必須經過有根有據的推理才行?;顒咏涣鳎海?)在數學學習中,你用到過推理嗎?(2)在日常生活中,你用到過推理嗎?這是一座橋梁,把課堂引向推理的方法。例題的安排,可以讓學生學會簡單的推理方法,同時增強學生的學習興趣。課堂練習:①游戲:蘋果在哪里?②判斷:是誰打破玻璃?把練習變成游戲的形式,也是為了增加課堂的趣味性,提高學生的學習興趣。課堂小結:進一步明確學習推理的必要性。課后作業(yè):①課本習題6.1:2,3。②預習下一節(jié):定義與命題
③如果某人本月繳所得稅19.2元,那么此人本月工資薪金是多少元?根據所給條件寫出簡單的一次函數表達式是本節(jié)課的重點加難點,所以在解決這一問題時及時引導學生總結學習體會,教給學生掌握“從特殊到一般”的認識規(guī)律中發(fā)現問題的方法。類比出一次函數關系式的一般式的求法,以此突破教學難點。在學習過程中,我巡視并予以個別指導,關注學生的個體發(fā)展。經學生分析:(1)當月收入大于1600元而小于2100元時,y=0.05×(x-1600);(2)當x=1760時,y=0.05×(1760-1600)=8(元);(3)設此人本月工資、薪金是x元,則19.2=0.05×(x-1600) X=1984五.教學效果課前:通過本節(jié)課的學習,教學目標應該可以基本達成,學生能夠理解一次函數和正比例函數的概念,以及它們之間的關系,并能正確識別一次函數解析式,能根據所給條件寫出簡單的一次函數表達式,且通過本節(jié)課的學習學生的抽象思維能力,數學應用能力都能有所提升,
【設計意圖】:這一環(huán)節(jié)的設計主要是為了培養(yǎng)學生自主學習的能力,讓學生在自學中初步認識概念。通過材料的閱讀,活動的實踐,讓學生在自畫、自糾中,加深對概念的理解,培養(yǎng)學生良好的畫圖習慣。(三)例題講解學生活動4:(由于例題都比較簡單,所以讓學生自己先做,教師巡視指導)例1、寫出圖中A、B、C、D、E各點的坐標。例2、在直角坐標系中,描出下列各點:A(4,3), B(-2,3),C(-4,-1),D(2,-2)?!驹O計意圖】:例1的目的是給出點的位置,寫出點的坐標。例2的目的是給出點的坐標,描出點。學完概念之后,馬上對概念進行應用,達到鞏固的目的。當時上課時這2道例題的解答都比較圓滿,絕大部分學生都能順利做出。
本環(huán)節(jié)運用了一個階梯式的問答方法,幫助突破本節(jié)課的難點。同時,從具體的實際問題入手,由特殊問題到一般規(guī)律的揭示,不僅解決了難點問題,而且從另外一個角度講也滲透給了學生的數形結合思想,還有利于學生主動探索意識的培養(yǎng)。4、自主評價本環(huán)節(jié)主要是應用本節(jié)課所學的知識以及所積累形成的學習經驗和體驗解決問題的過程,即課堂鞏固訓練。在練習題的選擇上,由簡單到復雜。先是結合圖象獲取信息進行簡單的填空和選擇,此題屬于A組題型,檢驗學生的掌握情況;然后進行了一道B組題,關于“一次函數與一元一次方程的關系”知識點的靈活運用,進一步通過練習體會它們的關系。5、自主發(fā)展:最后一道則是特殊的區(qū)別于之前所學習的分段函數練習,發(fā)散學生思維問題的訓練。讓學生體會分段函數的特點,并掌握求分段函數解析式的方法。
[互動2]師:請大家從上面的解題經歷中,總結一下如果已知函數的圖象,怎樣求函數的表達式?小組討論之后再發(fā)表意見。生:第一步根據圖象,確定這個函數是正比例函數或是一次函數;第二步設函數表達式;第三步:根據表達式列等式,若是正比例函數,只要找圖象上一個點的坐標就可以了;若是一次函數,則需要找到圖象上兩個點的坐標,然后把點的坐標分別代入所設的解析式中,組成關于R、b的一個或兩個方程。第四步:求出R、b的值第五步:把R、b的值代回到表達式中就可以了。師:分析得太好了。那么,大家說一說,確定正比例函數的表達式需要幾個條件?確定一次函數的表達式呢?要說明理由。生:確定正比例函數需要一個條件,而確定一次函數需要兩個條件。原因是正比例函數的表達式:y=Rx(R≠0)中,只有一個系數R,而一次函數的表達式y(tǒng)=Rx+b(R≠0)中,有兩個系數(待定)R和b。
通過活動讓學生思考:回答問題。對學生的不同回答,只要合理,就給以認可。設計意圖:讓學生學會有條理的表述自己的思考過程,理解三種數據都是刻畫了一組數據的平均水平。整個授課的過程中,由于問題的難點進行了分解突破,問題的解決水到渠成。同時要學生意識到:學會用數據說話,科學地分析身邊的事例。5.歸納小結,鞏固提高。(1)列表對比平均數眾數中位數概念注意點(2)在生活中可用平均數、眾數和中位數這三個特征數來描述一組數據的集中趨勢,它們各有不同的側重點,需聯(lián)系實際進行選擇,對于同一份材料,同一組數據,不同的目的,應選擇不同的數據代表。因從不同的角度進行分析時,看到的結果可能是截然不同的。作為信息的接受者,分析數據應該從多角度對統(tǒng)計數據作出較全面的分析,從而避免機械的,片面的解釋。
引導學生回憶所學知識。通過這節(jié)課的學習你得到什么啟示和收獲?談談你的感受.目的:總結回顧學習內容,有助于學生養(yǎng)成整理知識的習慣;有助于學生在剛剛理解了新知識的基礎上,及時把知識系統(tǒng)化、條理化。(四)作業(yè)布置加強“教、學”反思,進一步提高“教與學”效果。四、說板書設計采用了如下板書,要點突出,簡明清晰。一次函數正比例函數圖像的畫法:確定兩點為(0,0)和(1,K)一次函數選擇的兩點為:(0,k)和(-b\k,0)五、說課后小結實踐證明,在教學中,充分利用教學方法的優(yōu)勢,為學生創(chuàng)造一個好的學習氛圍,來引導學生發(fā)現問題、分析問題從而解決問題。多媒體課件支撐著整個教學過程,令學生在一個生動有趣的課堂上,能愉快地接受知識
解析:根據AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數.解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結:通過本題要掌握角平分線的作圖步驟,根據作圖明確AM是∠BAC的角平分線是解題的關鍵.三、板書設計1.角平分線的性質:角平分線上的點到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數學生在性質的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數a、b的值分別是94,32.方法總結:解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據不含某一項,可得這一項系數等于零,再列出方程解答.三、板書設計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應用本節(jié)知識的綜合性較強,要求學生熟練掌握前面所學的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學生理解并掌握多項式與多項式相乘的法則,教學中一定要精講精練,讓學生從練習中再次體會法則的內容,為以后的學習奠定基礎
解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結:掌握長方形的面積公式和單項式乘單項式法則是解題的關鍵.三、板書設計1.單項式乘以單項式的運算法則:單項式相乘,把系數、同底數冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數作為積的一個因式.2.單項式乘以單項式的應用本課時的重點是讓學生理解單項式的乘法法則并能熟練應用.要求學生在乘法的運算律以及冪的運算律的基礎上進行探究.教師在課堂上應該處于引導位置,鼓勵學生“試一試”,學生通過動手操作,能夠更為直接的理解和應用該知識點
方法總結:在等腰三角形有關計算或證明中,會遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設計1.等腰三角形的性質:等腰三角形是軸對稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸;等腰三角形的兩個底角相等.2.運用等腰三角性質解題的一般思想方法:方程思想、整體思想和轉化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數學生對等腰三角形的“三線合一”性質理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高
一、情境導入1.計算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據多項式乘以單項式的運算歸納出多項式除以單項式的運算法則嗎?二、合作探究探究點:多項式除以單項式【類型一】 直接利用多項式除以單項式進行計算計算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據多項式除以單項式,先用多項式的每一項分別除以這個單項式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結:多項式除以單項式,先把多項式的每一項都分別除以這個單項式,然后再把所得的商相加.
方法總結:觀察表中的數據,發(fā)現其中的變化規(guī)律,然后根據其增減趨勢寫出自變量與因變量之間的關系式.三、板書設計1.用關系式表示變量間關系2.表格和關系式的區(qū)別與聯(lián)系:表格能直接得到某些具體的對應值,但不能直接反映變量的整體變化情況;用關系式表示變量之間的關系簡單明了,便于計算分析,能方便求出自變量為任意一個值時,相對應的因變量的值,但是需計算.本節(jié)課的教學內容是變量間關系的另一種表示方法,這種表示方法學生才接觸到,學生感覺有點難.這節(jié)課的重點是讓學生掌握用關系式與表格表示變量間的關系,難點是理解這兩種表示方法的優(yōu)缺點.就此問題,通過讓學生對幾個例子比較、討論、總結、歸納兩種方法的優(yōu)點來解決,這樣學生就能很好地區(qū)分這兩種表示方法,并能對不同的問題選擇恰當的方法
解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉化為三角形后木架的形狀就不變了.根據具體多邊形轉化為三角形的經驗及題中所加木條可找到一般規(guī)律.解:過n邊形的一個頂點可以作(n-3)條對角線,把多邊形分成(n-2)個三角形,所以,要使一個n邊形木架不變形,至少需要(n-3)根木條固定.方法總結:將多邊形轉化為三角形時,所需要的木條根數,可從具體到一般去發(fā)現規(guī)律,然后驗證求解.三、板書設計1.邊邊邊:三邊對應相等的兩個三角形全等,簡寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動入手,有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊邊邊”掌握較好,達到了教學的預期目的.存在的問題是少數學生在輔助線的構造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學中進一步加強鞏固和訓練
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設計1.邊角邊:兩邊及其夾角分別相等的兩個三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應相等的兩個三角形不一定全等.2.全等三角形判定與性質的綜合運用本節(jié)課從操作探究入手,具有較強的操作性和直觀性,有利于學生從直觀上積累感性認識,從而有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時不會正確分類,需要在今后的教學和作業(yè)中進一步加強分類思想的鞏固和訓練