光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉(zhuǎn)化為單項(xiàng)式相除問(wèn)題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結(jié):解整式除法的實(shí)際應(yīng)用題時(shí),應(yīng)分清何為除式,何為被除式,然后應(yīng)當(dāng)單項(xiàng)式除以單項(xiàng)式法則計(jì)算.三、板書(shū)設(shè)計(jì)1.單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則:?jiǎn)雾?xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.2.單項(xiàng)式除以單項(xiàng)式的應(yīng)用在教學(xué)過(guò)程中,通過(guò)生活中的情景導(dǎo)入,引導(dǎo)學(xué)生根據(jù)單項(xiàng)式乘以單項(xiàng)式的乘法運(yùn)算推導(dǎo)出其逆運(yùn)算的規(guī)律,在探究的過(guò)程中經(jīng)歷數(shù)學(xué)概念的生成過(guò)程,從而加深印象
一、情境導(dǎo)入1.計(jì)算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項(xiàng)式乘以單項(xiàng)式的運(yùn)算歸納出多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則嗎?二、合作探究探究點(diǎn):多項(xiàng)式除以單項(xiàng)式【類型一】 直接利用多項(xiàng)式除以單項(xiàng)式進(jìn)行計(jì)算計(jì)算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項(xiàng)式除以單項(xiàng)式,先用多項(xiàng)式的每一項(xiàng)分別除以這個(gè)單項(xiàng)式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結(jié):多項(xiàng)式除以單項(xiàng)式,先把多項(xiàng)式的每一項(xiàng)都分別除以這個(gè)單項(xiàng)式,然后再把所得的商相加.
解析:先求出長(zhǎng)方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長(zhǎng)方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結(jié):掌握長(zhǎng)方形的面積公式和單項(xiàng)式乘單項(xiàng)式法則是解題的關(guān)鍵.三、板書(shū)設(shè)計(jì)1.單項(xiàng)式乘以單項(xiàng)式的運(yùn)算法則:?jiǎn)雾?xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里面含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.2.單項(xiàng)式乘以單項(xiàng)式的應(yīng)用本課時(shí)的重點(diǎn)是讓學(xué)生理解單項(xiàng)式的乘法法則并能熟練應(yīng)用.要求學(xué)生在乘法的運(yùn)算律以及冪的運(yùn)算律的基礎(chǔ)上進(jìn)行探究.教師在課堂上應(yīng)該處于引導(dǎo)位置,鼓勵(lì)學(xué)生“試一試”,學(xué)生通過(guò)動(dòng)手操作,能夠更為直接的理解和應(yīng)用該知識(shí)點(diǎn)
通常購(gòu)買(mǎi)同一品種的西瓜時(shí),西瓜的質(zhì)量越大,花費(fèi)的錢(qián)越多,因此人們希望西瓜瓤占整個(gè)西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個(gè)西瓜的體積各是多少?(2)西瓜瓤與整個(gè)西瓜的體積比是多少?(3)買(mǎi)大西瓜合算還是買(mǎi)小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結(jié)果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個(gè)西瓜的體積是43πR3;(2)西瓜瓤與整個(gè)西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個(gè)西瓜的體積比是(R-d)3R3<1,故買(mǎi)大西瓜比買(mǎi)小西瓜合算.方法總結(jié):本題能夠根據(jù)球的體積,得到兩個(gè)物體的體積比即為它們的半徑的立方比是解此題的關(guān)鍵.
【類型二】 根據(jù)數(shù)軸求不等式的解關(guān)于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡(jiǎn)不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結(jié):本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關(guān)于a的方程是解題關(guān)鍵.三、板書(shū)設(shè)計(jì)1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學(xué)習(xí)不等式的解和解集,利用數(shù)軸表示不等式的解,讓學(xué)生體會(huì)到數(shù)形結(jié)合的思想的應(yīng)用,能夠直觀的理解不等式的解和解集的概念,為接下來(lái)的學(xué)習(xí)打下基礎(chǔ).在課堂教學(xué)中,要始終以學(xué)生為主體,以引導(dǎo)的方式鼓勵(lì)學(xué)生自己探究未知,提高學(xué)生的自我學(xué)習(xí)能力.
答:所有陰影部分的面積和是5050cm2.方法總結(jié):首先應(yīng)找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過(guò)分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認(rèn)真觀察、仔細(xì)思考,善用聯(lián)想來(lái)解決這類問(wèn)題.三、板書(shū)設(shè)計(jì)1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點(diǎn):能夠運(yùn)用平方差公式分解因式的多項(xiàng)式必須是二項(xiàng)式,兩項(xiàng)都能寫(xiě)成平方的形式,且符號(hào)相反.運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通??紤]應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡(jiǎn),二是分解因式時(shí),每個(gè)因式都要分解徹底.
解:設(shè)另一個(gè)因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個(gè)因式為2x2+x-3.方法總結(jié):因?yàn)檎降某朔ê头纸庖蚴交槟孢\(yùn)算,所以分解因式后的兩個(gè)因式的乘積一定等于原來(lái)的多項(xiàng)式.三、板書(shū)設(shè)計(jì)1.因式分解的概念把一個(gè)多項(xiàng)式轉(zhuǎn)化成幾個(gè)整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關(guān)系因式分解是整式乘法的逆運(yùn)算.本課是通過(guò)對(duì)比整式乘法的學(xué)習(xí),引導(dǎo)學(xué)生探究因式分解和整式乘法的聯(lián)系,通過(guò)對(duì)比學(xué)習(xí)加深對(duì)新知識(shí)的理解.教學(xué)時(shí)采用新課探究的形式,鼓勵(lì)學(xué)生參與到課堂教學(xué)中,以興趣帶動(dòng)學(xué)習(xí),提高課堂學(xué)習(xí)效率.
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項(xiàng),也不含x項(xiàng),∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結(jié):解決此類問(wèn)題首先要利用多項(xiàng)式乘法法則計(jì)算出展開(kāi)式,合并同類項(xiàng)后,再根據(jù)不含某一項(xiàng),可得這一項(xiàng)系數(shù)等于零,再列出方程解答.三、板書(shū)設(shè)計(jì)1.多項(xiàng)式與多項(xiàng)式的乘法法則:多項(xiàng)式和多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)與另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.2.多項(xiàng)式與多項(xiàng)式乘法的應(yīng)用本節(jié)知識(shí)的綜合性較強(qiáng),要求學(xué)生熟練掌握前面所學(xué)的單項(xiàng)式與單項(xiàng)式相乘及單項(xiàng)式與多項(xiàng)式相乘的知識(shí),同時(shí)為了讓學(xué)生理解并掌握多項(xiàng)式與多項(xiàng)式相乘的法則,教學(xué)中一定要精講精練,讓學(xué)生從練習(xí)中再次體會(huì)法則的內(nèi)容,為以后的學(xué)習(xí)奠定基礎(chǔ)
一個(gè)不透明的袋子中裝有5個(gè)黑球和3個(gè)白球,這些球的大小、質(zhì)地完全相同,隨機(jī)從袋子中摸出4個(gè)球,則下列事件是必然事件的是( )A.摸出的4個(gè)球中至少有一個(gè)是白球B.摸出的4個(gè)球中至少有一個(gè)是黑球C.摸出的4個(gè)球中至少有兩個(gè)是黑球D.摸出的4個(gè)球中至少有兩個(gè)是白球解析:∵袋子中只有3個(gè)白球,而有5個(gè)黑球,∴摸出的4個(gè)球可能都是黑球,因此選項(xiàng)A是不確定事件;摸出的4個(gè)球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪種情況,至少有一個(gè)球是黑球,∴選項(xiàng)B是必然事件;摸出的4個(gè)球可能為1黑3白,∴選項(xiàng)C是不確定事件;摸出的4個(gè)球可能都是黑球或1白3黑,∴選項(xiàng)D是不確定事件.故選B.方法總結(jié):事件類型的判斷首先要判斷該事件發(fā)生與否是不是確定的.若是確定的,再判斷其是必然發(fā)生的(必然事件),還是必然不發(fā)生的(不可能事件).若是不確定的,則該事件是不確定事件.
【類型一】 逆用積的乘方進(jìn)行簡(jiǎn)便運(yùn)算計(jì)算:(23)2014×(32)2015.解析:將(32)2015轉(zhuǎn)化為(32)2014×32,再逆用積的乘方公式進(jìn)行計(jì)算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法總結(jié):對(duì)公式an·bn=(ab)n要靈活運(yùn)用,對(duì)于不符合公式的形式,要通過(guò)恒等變形轉(zhuǎn)化為公式的形式,運(yùn)用此公式可進(jìn)行簡(jiǎn)便運(yùn)算.【類型二】 逆用積的乘方比較數(shù)的大小試比較大?。?13×310與210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法總結(jié):利用積的乘方,轉(zhuǎn)化成同底數(shù)的同指數(shù)冪是解答此類問(wèn)題的關(guān)鍵.三、板書(shū)設(shè)計(jì)1.積的乘方法則:積的乘方等于各因式乘方的積.即(ab)n=anbn(n是正整數(shù)).2.積的乘方的運(yùn)用在本節(jié)的教學(xué)過(guò)程中教師可以采用與前面相同的方式展開(kāi)教學(xué).教師在講解積的乘方公式的應(yīng)用時(shí),再補(bǔ)充講解積的乘方公式的逆運(yùn)算:an·bn=(ab)n,同時(shí)教師為了提高學(xué)生的運(yùn)算速度和應(yīng)用能力,也可以補(bǔ)充講解:當(dāng)n為奇數(shù)時(shí),(-a)n=-an(n為正整數(shù));當(dāng)n為偶數(shù)時(shí),(-a)n=an(n為正整數(shù))
方法總結(jié):本題考查了冪的乘方的逆用及同底數(shù)冪的乘法,整體代入求解也比較關(guān)鍵.【類型三】 逆用冪的乘方結(jié)合方程思想求值已知221=8y+1,9y=3x-9,則代數(shù)式13x+12y的值為_(kāi)_______.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,則21=3(y+1),2y=x-9,解得x=21,y=6,故代數(shù)式13x+12y=7+3=10.故答案為10.方法總結(jié):根據(jù)冪的乘方的逆運(yùn)算進(jìn)行轉(zhuǎn)化得到x和y的方程組,求出x、y,再計(jì)算代數(shù)式.三、板書(shū)設(shè)計(jì)1.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘.即(am)n=amn(m,n都是正整數(shù)).2.冪的乘方的運(yùn)用冪的乘方公式的探究方式和前節(jié)類似,因此在教學(xué)中可以利用該優(yōu)勢(shì)展開(kāi)教學(xué),在探究過(guò)程中可以進(jìn)一步發(fā)揮學(xué)生的主動(dòng)性,盡可能地讓學(xué)生在已有知識(shí)的基礎(chǔ)上,通過(guò)自主探究,獲得冪的乘方運(yùn)算的感性認(rèn)識(shí),進(jìn)而理解運(yùn)算法則
解析:(1)根據(jù)圖象的縱坐標(biāo),可得比賽的路程.根據(jù)圖象的橫坐標(biāo),可得比賽的結(jié)果;(2)根據(jù)乙加速后行駛的路程除以加速后的時(shí)間,可得答案.解:(1)由縱坐標(biāo)看出,這次龍舟賽的全程是1000米;由橫坐標(biāo)看出,乙隊(duì)先到達(dá)終點(diǎn);(2)由圖象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的時(shí)間是3.8-2.2=1.6(分鐘),乙與甲相遇時(shí)乙的速度600÷1.6=375(米/分鐘).方法總結(jié):解決雙圖象問(wèn)題時(shí),正確識(shí)別圖象,弄清楚兩圖象所代表的意義,從中挖掘有用的信息,明確實(shí)際意義.三、板書(shū)設(shè)計(jì)1.用折線型圖象表示變量間關(guān)系2.根據(jù)折線型圖象獲取信息解決問(wèn)題經(jīng)歷一般規(guī)律的探索過(guò)程,培養(yǎng)學(xué)生的抽象思維能力,經(jīng)歷從實(shí)際問(wèn)題中得到關(guān)系式這一過(guò)程,提升學(xué)生的數(shù)學(xué)應(yīng)用能力,使學(xué)生在探索過(guò)程中體驗(yàn)成功的喜悅,樹(shù)立學(xué)習(xí)的自信心.體驗(yàn)生活中數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣
解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計(jì)這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計(jì)值是0.94.三、板書(shū)設(shè)計(jì)1.頻率及其穩(wěn)定性:在大量重復(fù)試驗(yàn)的情況下,事件的頻率會(huì)呈現(xiàn)穩(wěn)定性,即頻率會(huì)在一個(gè)常數(shù)附近擺動(dòng).隨著試驗(yàn)次數(shù)的增加,擺動(dòng)的幅度有越來(lái)越小的趨勢(shì).2.用頻率估計(jì)概率:一般地,在大量重復(fù)實(shí)驗(yàn)下,隨機(jī)事件A發(fā)生的頻率會(huì)穩(wěn)定到某一個(gè)常數(shù)p,于是,我們用p這個(gè)常數(shù)表示隨機(jī)事件A發(fā)生的概率,即P(A)=p.教學(xué)過(guò)程中,學(xué)生通過(guò)對(duì)比頻率與概率的區(qū)別,體會(huì)到兩者間的聯(lián)系,從而運(yùn)用其解決實(shí)際生活中遇到的問(wèn)題,使學(xué)生感受到數(shù)學(xué)與生活的緊密聯(lián)系
解析:橫軸表示時(shí)間,縱軸表示溫度.溫度最高應(yīng)找到圖象的最高點(diǎn)所對(duì)應(yīng)的x值,即15時(shí),A對(duì);溫度最低應(yīng)找到圖象的最低點(diǎn)所對(duì)應(yīng)的x值,即3時(shí),B對(duì);這天最高溫度與最低溫度的差應(yīng)讓前面的兩個(gè)y值相減,即38-22=16(℃),C錯(cuò);從圖象看出,這天0~3時(shí),15~24時(shí)溫度在下降,D對(duì).故選C.方法總結(jié):認(rèn)真觀察圖象,弄清楚時(shí)間是自變量,溫度是因變量,然后由圖象上的點(diǎn)確定自變量及因變量的對(duì)應(yīng)值.三、板書(shū)設(shè)計(jì)1.用曲線型圖象表示變量間關(guān)系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢(shì),可通過(guò)圖象來(lái)研究變量的某些性質(zhì),這也是數(shù)形結(jié)合的優(yōu)點(diǎn),但是它也存在感性觀察不夠準(zhǔn)確,畫(huà)面局限性大的缺點(diǎn).教學(xué)中讓學(xué)生自己歸納總結(jié),回顧反思,將知識(shí)點(diǎn)串連起來(lái),完成對(duì)該部分內(nèi)容的完整認(rèn)識(shí)和意義建構(gòu).這對(duì)學(xué)生在實(shí)際情境中根據(jù)不同需要選擇恰當(dāng)?shù)姆椒ū硎咀兞块g的關(guān)系,發(fā)展與深化思維能力是大有裨益的
解析:根據(jù)“全等三角形的對(duì)應(yīng)角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形內(nèi)角和定理來(lái)求∠ACB的度數(shù).解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法總結(jié):本題將三角形內(nèi)角和與全等三角形的性質(zhì)綜合考查,解答問(wèn)題時(shí)要將所求的角與已知角通過(guò)全等及三角形內(nèi)角之間的關(guān)系聯(lián)系起來(lái).三、板書(shū)設(shè)計(jì)1.全等形與全等三角形的概念:能夠完全重合的圖形叫做全等形;能夠完全重合的三角形叫做全等三角形.2.全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)角、對(duì)應(yīng)線段相等.首先展示全等形的圖片,激發(fā)學(xué)生興趣,從圖中總結(jié)全等形和全等三角形的概念.最后總結(jié)全等三角形的性質(zhì),通過(guò)練習(xí)來(lái)理解全等三角形的性質(zhì)并滲透符號(hào)語(yǔ)言推理.通過(guò)實(shí)例熟悉運(yùn)用全等三角形的性質(zhì)解決一些簡(jiǎn)單的實(shí)際問(wèn)題
方法總結(jié):判斷軸對(duì)稱的條數(shù),仍然是根據(jù)定義進(jìn)行判斷,判斷軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,注意不要遺漏.探究點(diǎn)二:兩個(gè)圖形成軸對(duì)稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對(duì)稱?解析:根據(jù)軸對(duì)稱的意義,經(jīng)過(guò)翻折,看兩個(gè)圖形能否完全重合,若能重合,則兩個(gè)圖形成軸對(duì)稱.解:(4)(5)(6).方法總結(jié):動(dòng)手操作或結(jié)合軸對(duì)稱的概念展開(kāi)想象,在腦海中嘗試完成一個(gè)動(dòng)態(tài)的折疊過(guò)程,從而得到結(jié)論.三、板書(shū)設(shè)計(jì)1.軸對(duì)稱圖形的定義2.對(duì)稱軸3.兩個(gè)圖形成軸對(duì)稱這節(jié)課充分利用多媒體教學(xué),給學(xué)生以直觀指導(dǎo),主動(dòng)向?qū)W生質(zhì)疑,促使學(xué)生思考與發(fā)現(xiàn),形成認(rèn)識(shí),獨(dú)立獲取知識(shí)和技能.另外,借助多媒體教學(xué)給學(xué)生創(chuàng)設(shè)寬松的學(xué)習(xí)氛圍,使學(xué)生在學(xué)習(xí)中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學(xué)生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)
解析:平行線中的拐點(diǎn)問(wèn)題,通常需過(guò)拐點(diǎn)作平行線.解:(1)∠AED=∠BAE+∠CDE.理由如下:過(guò)點(diǎn)E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法總結(jié):無(wú)論平行線中的何種問(wèn)題,都可轉(zhuǎn)化到基本模型中去解決,把復(fù)雜的問(wèn)題分解到簡(jiǎn)單模型中,問(wèn)題便迎刃而解.三、板書(shū)設(shè)計(jì)平行線的性質(zhì):性質(zhì)1:兩條平行線被第三條直線所截,同位角相等;性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等;性質(zhì)3:兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ).平行線的性質(zhì)是幾何證明的基礎(chǔ),教學(xué)中注意基本的推理格式的書(shū)寫(xiě),培養(yǎng)學(xué)生的邏輯思維能力,鼓勵(lì)學(xué)生勇于嘗試.在課堂上,力求體現(xiàn)學(xué)生的主體地位,把課堂交給學(xué)生,讓學(xué)生在動(dòng)口、動(dòng)手、動(dòng)腦中學(xué)數(shù)學(xué)
方法總結(jié):觀察表中的數(shù)據(jù),發(fā)現(xiàn)其中的變化規(guī)律,然后根據(jù)其增減趨勢(shì)寫(xiě)出自變量與因變量之間的關(guān)系式.三、板書(shū)設(shè)計(jì)1.用關(guān)系式表示變量間關(guān)系2.表格和關(guān)系式的區(qū)別與聯(lián)系:表格能直接得到某些具體的對(duì)應(yīng)值,但不能直接反映變量的整體變化情況;用關(guān)系式表示變量之間的關(guān)系簡(jiǎn)單明了,便于計(jì)算分析,能方便求出自變量為任意一個(gè)值時(shí),相對(duì)應(yīng)的因變量的值,但是需計(jì)算.本節(jié)課的教學(xué)內(nèi)容是變量間關(guān)系的另一種表示方法,這種表示方法學(xué)生才接觸到,學(xué)生感覺(jué)有點(diǎn)難.這節(jié)課的重點(diǎn)是讓學(xué)生掌握用關(guān)系式與表格表示變量間的關(guān)系,難點(diǎn)是理解這兩種表示方法的優(yōu)缺點(diǎn).就此問(wèn)題,通過(guò)讓學(xué)生對(duì)幾個(gè)例子比較、討論、總結(jié)、歸納兩種方法的優(yōu)點(diǎn)來(lái)解決,這樣學(xué)生就能很好地區(qū)分這兩種表示方法,并能對(duì)不同的問(wèn)題選擇恰當(dāng)?shù)姆椒?/p>
探究點(diǎn)三:作中心對(duì)稱圖形如圖,網(wǎng)格中有一個(gè)四邊形和兩個(gè)三角形.(1)請(qǐng)你畫(huà)出三個(gè)圖形關(guān)于點(diǎn)O的中心對(duì)稱圖形;(2)將(1)中畫(huà)出的圖形與原圖形看成一個(gè)整體圖形,請(qǐng)寫(xiě)出這個(gè)整體圖形對(duì)稱軸的條數(shù);這個(gè)整體圖形至少旋轉(zhuǎn)多少度能與自身重合?解:(1)如圖所示;(2)這個(gè)整體圖形的對(duì)稱軸有4條;此圖形最少旋轉(zhuǎn)90°能與自身重合.三、板書(shū)設(shè)計(jì)1.中心對(duì)稱如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱.2.中心對(duì)稱圖形把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形.教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,結(jié)合圖形,多觀察,多歸納,體會(huì)識(shí)別中心對(duì)稱圖形的方法,理解中心對(duì)稱圖形的特征.
在因式分解的幾種方法中,提取公因式法師最基本的的方法,學(xué)生也很容易掌握。但在一些綜合運(yùn)用的題目中,學(xué)生總會(huì)易忘記先觀察是否有公因式,而直接想著運(yùn)用公式法分解。這樣直接導(dǎo)致有些題目分解錯(cuò)誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強(qiáng)。其實(shí)公式法分解因式。學(xué)生比較會(huì)將平方差和完全平方式混淆。這是對(duì)公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進(jìn)行區(qū)分。如果是兩項(xiàng)的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項(xiàng)則優(yōu)先考慮完全平方式進(jìn)行因式分解。培養(yǎng)學(xué)生的整體觀念,靈活運(yùn)用公式的能力。注重總結(jié)做題步驟。這章節(jié)知識(shí)看起來(lái)很簡(jiǎn)單,但操作性很強(qiáng)的,相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手,基礎(chǔ)不好的學(xué)生需要手把手的教,因此,應(yīng)該引導(dǎo)學(xué)生總結(jié)多項(xiàng)式因式分解的一般步驟①如果多項(xiàng)式的各項(xiàng)有公因式,那么先提公因式;