它位于三角函數(shù)與數(shù)學變換的結合點上,能較好反應三角函數(shù)及變換之間的內在聯(lián)系和相互轉換,本節(jié)課內容的地位體現(xiàn)在它的基礎性上。作用體現(xiàn)在它的工具性上。前面學生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進行求值、化簡、證明,雖然學生已經(jīng)具備了一定的推理、運算能力,但在數(shù)學的應用意識與應用能力方面尚需進一步培養(yǎng).課程目標1.能用二倍角公式推導出半角公式,體會三角恒等變換的基本思想方法,以及進行簡單的應用. 2.了解三角恒等變換的特點、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進行三角函數(shù)式的化簡、求值以及證明,進而進行簡單的應用. 數(shù)學學科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學運算:三角函數(shù)式的求值.
本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點得出正弦函數(shù)、余弦函數(shù)的性質. 課程目標1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會利用周期性定義和誘導公式求簡單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(單調性、最值、圖象與x軸的交點等);5.能利用性質解決一些簡單問題. 數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調區(qū)間;3.數(shù)學運算:利用性質求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學建模:讓學生借助數(shù)形結合的思想,通過圖像探究正、余弦函數(shù)的性質.重點:通過正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質; 難點:應用正、余弦函數(shù)的性質來求含有cosx,sinx的函數(shù)的單調性、最值、值域及對稱性.
情景導入:......運用情景營造氣氛,激發(fā)學生的求知欲望,幫助學生聯(lián)系現(xiàn)實問題,學習歷史,拉近歷史與現(xiàn)實的距離,引導學生關注時政熱點,關心國家大事。自主學習:組織學生閱讀課文,老師參與學生閱讀活動并板書知識結構。通過學生自主學習,培養(yǎng)學生自學能力,為進一步好好學習打下基礎。交流學習:學生自學以后,老師引導學生相互交流自學成果,學生自主提出問題,相互解答,從而達到生生互動、師生互動,在互動中學習,共同提高
本節(jié)課是在學習了三角函數(shù)圖象和性質的前提下來學習三角函數(shù)模型的簡單應用,進一步突出函數(shù)來源于生活應用于生活的思想,讓學生體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學“建?!彼枷?從而培養(yǎng)學生的創(chuàng)新精神和實踐能力.課程目標1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會用三角函數(shù)模型解決一些簡單的實際問題.2.實際問題抽象為三角函數(shù)模型. 數(shù)學學科素養(yǎng)1.邏輯抽象:實際問題抽象為三角函數(shù)模型問題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實際問題中抽取基本的數(shù)學關系來建立數(shù)學模型; 3.數(shù)學運算:實際問題求解; 4.數(shù)學建模:體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學建模思想,提高學生的建模、分析問題、數(shù)形結合、抽象概括等能力.
展示學習過的物理學內容:伽利略的“比薩斜塔”實驗,證明了:兩個鐵球同時落地。得出結論:實踐是檢驗認識正確與否的唯一標準。(因為這點理解起來有點難,所一教師要適當?shù)闹v解)A、一種認識是否是真理不能由這一認識本身回答B(yǎng)、客觀事物自身也不能回答認識是否正確地反映了它C、實踐是聯(lián)系主觀與客觀的橋梁。人們把認識和實踐的結果對照,相符合,認識就正確?!?實踐是認識的目的和歸宿:走進社會:(課本P46歸國博士案例)從這個故事中我們可以得到什么啟示?得出結論:實踐是認識的歸宿和目的。啟發(fā)學生學以致用,eg:紀中的學生研究地溝油簡易檢測方法(靈活利用身邊的教學資源)?!景鍟O計】實踐是認識的基礎(板書)投影:逐步展示本課知識結構圖。學生通過回憶,讓學生有直觀的認識,學習內容一目了然。1.實踐是認識的來源。2.實踐是認識發(fā)展的動力。3.實踐是檢驗認識的真理性的唯一標準。
《矛盾是事物發(fā)展的源泉和動力》是人教版普通高中課程標準實驗教科書,《思想政治》必修第4冊,《生活與哲學》第3單元第9課的第1框的內容。本節(jié)課的這部分內容,是在學生們學習了上一框用發(fā)展練習的觀點看問題的基礎上展開的,本框通過矛盾同一性和斗爭性,普遍性與特殊性這兩大關系,揭示矛盾是事物發(fā)展的源泉和動力。矛盾是本書的一個重要觀點。對于學生樹立正確的人生觀以及下一階段的學習都用很重要的作用。二、說教學目標(每個說1~2個)按照新課標教學目標,結合著高二年級學生他們的認知結構及其心理特征,我制定了以下的教學目標:1、知識目標:通過學習掌握矛盾的含義。矛盾的同一性和斗爭性。矛盾的普遍性和特殊性。2、過程與方法的目標:使學生初步形成用矛盾的統(tǒng)一性和斗爭性相統(tǒng)一的觀點認識和把握事物的能力,以及通過運用矛盾普遍性和特殊性辯證關系的原理認識和解決問題的能力。
2、講授新課:在講授新課的過程中,我突出教材的重點,明了地分析教材的難點。還根據(jù)教材的特點,學生的實際、教師的特長,以及教學設備的情況,我選擇了多媒體的教學手段。這些教學手段的運用可以使抽象的知識具體化,枯燥的知識生動化,乏味的知識興趣化。還重視教材中的疑問,適當對題目進行引申,使它的作用更加突出,有利于學生對知識的串聯(lián)、積累、加工,從而達到舉一反三的效果。3、課堂小結,強化認識:課堂小結,可以把課堂傳授的知識盡快地轉化為學生的素質;簡單扼要的課堂小結,可使學生更深刻地理解政治理論在實際生活中的應用,并且逐漸地培養(yǎng)學生具有良好的個性。4、板書設計我比較注重直觀、系統(tǒng)的板書設計,還及時地體現(xiàn)教材中的知識點,以便于學生能夠理解掌握。
3、課堂小結,強化認識。(2—3分鐘)通過總結本課的知識,簡單的用三個概念三個關系,簡明扼要的總結出本節(jié)課的知識,突出本框題的重難點。其中重點給學生梳理一下哲學的含義,使學生在學習的最后對于哲學有一個全面而準確的理解,強化學生對于哲學的認識。4、課堂練習針對高中學生初步接觸哲學,運用哲學思維來分析哲學問題的能力還需要今后的培養(yǎng),我進行了分層的方式來設計習題,這樣設計一方面符合學生認知的能力,由簡單到困難,一步步的深入,另一方面,在練習的過程中,也可以使學生鞏固基礎知識,使學有余力的學生繼續(xù)提高,充分考慮到學生的實際情況。5、板書設計為了強化教學效果,我會在授課的過程中適時的書寫板書,我的板書設計總的來說是以簡潔明了的形式展示,便于學生一目了然的把握本節(jié)課的重難點,也可以建立知識間的聯(lián)系,便于學生形成完整的知識體系。
歸納:第一句正確。承認運動的絕對性。第二句錯誤。否認相對靜止的存在。3.課堂小結,強化認識(2—3分鐘)課堂小結,可以把課堂傳授的知識盡快地轉化為學生的素質;簡單扼要的課堂小結,可使學生更深刻地理解政治理論在實際生活中的應用,并且逐漸地培養(yǎng)學生具有良好的個性。人類社會是物質世界長期發(fā)展的產(chǎn)物,世界的本質是物質,世界的真正統(tǒng)一性就在于它的物質性,物質又是運動的,運動的形式多種多樣,運動又是物質的運動,物質和運動是不可分割的,運動和靜止既有區(qū)別又有聯(lián)系,物質的運動是絕對的、無條件的和永恒的,而靜止是相對的、有條件的和暫時的。4.板書設計我比較注重直觀,系統(tǒng)的板書設計,還及時地體現(xiàn)教材中的知識點,以便于學生能夠理解掌握。
2、講授新課:(35分鐘)通過教材第一目的講解,讓學生明白,生活和學習中有許多蘊涵哲學道理的故事,表明哲學并不神秘總結并過渡:生活也離不開哲學,哲學可以是我正確看待自然、人生、和社會的發(fā)展,從而指導人們正確的認識和改造世界。整個過程將伴隨著多媒體影像資料和生生對話討論以提高學生的積極性。3、課堂反饋,知識遷移。最后對本科課進行小結,鞏固重點難點,將本課的哲學知識遷移到與生活相關的例子,實現(xiàn)對知識的升華以及學生的再次創(chuàng)新;可使學生更深刻地理解重點和難點,為下一框學習做好準備。4、板書設計我采用直觀板書的方法,對本課的知識網(wǎng)絡在多媒體上進行展示。盡可能的簡潔,清晰。使學生對知識框架一目了然,幫助學生構建本課的知識結構。5、布置作業(yè)我會留適當?shù)淖詼y題及教學案例讓同學們做課后練習和思考,檢驗學生對本課重點的掌握以及對難點的理解。并及時反饋。對學生在理解中仍有困難的知識點,我會在以后的教學中予以疏導。
(7)精講即精講點撥,釋疑解難?,F(xiàn)代教育理論一方面強調學生學習的主動性;另一方面也重視發(fā)揮教師的積極性。課堂活動的主動性、合理性、有效性的實現(xiàn)還有賴于教師的講。精講就要求教師的講授內容精要,分析精辟,語言精彩、節(jié)奏精練、點撥精當。從內容上看,本節(jié)課精講主要有三處:一、運動的含義;二、運動是物質的根本屬性;三、靜止是運動的特殊狀態(tài)。2、教學手段多媒體輔助教學。六、教學過程第一步:創(chuàng)設情景,用“謎語”導入新課。使學生置身于教學內容的情景之中,產(chǎn)生繼續(xù)探究的強烈愿望。第二步:運用直觀、形象的畫面將教學目標問題,喚起學生參與欲望,驅使學生去思考,去自讀。第三步:引導學生相互討論,實現(xiàn)學生之間的橫向交流。第四步:教師依據(jù)反饋信息,給予重點講授、提示點撥、搭橋鋪路。第五步:設置故事型的模擬法庭,開展討論,在高潮中結束新課。第六步:總結概括,深化知識,形成網(wǎng)絡。
5.課堂練習,夯實基礎。得出原理方法論之后,給學生一分鐘時間記憶,然后一名或幾名學生上講臺默寫,其他同學相互提問。針對這一基本概念,設置一道選擇題。6、播放黃宏、宋丹丹小品《回家》片段,引發(fā)學生的興趣,接著教師展示幾幅關于手機的圖片,然后讓學生結合圖片,進行討論交流解決“合作探究二”,然后進行搶答(可以引發(fā)學生的競爭,從而調動課堂氣氛)。教師在學生回答基礎上,引導學生得出發(fā)展的實質這一結論,接著教師展示“如何判斷一個事物是新事物還是舊事物的標準”,結合這一標準,讓學生判斷“電腦科技算命是不是新事物”,學生很容易就可以得出結論。7.教師簡單總結剛剛學過的內容,引出“運動、變化是不是發(fā)展?”然后讓學生討論交流“合作探究三”。然后進行搶答,教師在學生回答基礎上,稍加點評,給予積極地評價,然后展示答案。8.教師引導學生得出本節(jié)課的第二個原理與方法論,并讓學生當堂記憶,可以簡單提問。然后做課堂達標題,在學生展示答案后,教師簡單點撥即可。
“蛟龍?zhí)枴鄙顫撈鞯目傇O計師——中船重工第七〇二研究所的徐芑南,他先后三次被評為江蘇省和無錫市勞模,曾被評為上海市科技功臣,有十幾個國家、部、省、市級科技進步獎項與他的名字相聯(lián)。在徐芑南眼中,這些都只是“副產(chǎn)品”,為國家設計出最需要的潛水器,讓中國具備從“淺藍”走向“深藍”的能力,這才是他最大的愿望。每當說到大洋的海底世界,徐芑南的語速快了起來:“海底有好多資源,等著我們去發(fā)現(xiàn)、去利用,我們不能落在別人的后面!”海底有石油,海底有許多未知的生物,還有錳結核、鈷結殼、熱液硫化物……“蛟龍?zhí)枴钡牧㈨椖康木褪菫榱颂矫魃衩氐纳詈J澜纾旄H祟?。探究活動二:結合材料和教材,闡述創(chuàng)新與人類思維方式變革的關系。(設計意圖)通過學生們感興趣的材料,對本課的教學難點加以突破。
一、 學情分析根據(jù)新課程的核心理念:課程教學要以學生發(fā)展為本,讓學生主主動參與是新課程實施的核心。所以我們要了解學生的基本情況。一方面:在高二階段學生的思維能力從總體上看,正處于急劇發(fā)展、變化和成熟的過程中,他們急迫要去了解認識不斷變化的社會。另一方面:此階段的學生知識儲備還不夠、閱歷淺,對于社會歷史的發(fā)展還停留在感性認識的基礎上,還沒有上升到理性的高度。因此對其進行本框的教學很有必要。二、 教材分析俗話說,教材是老師的教本,學生的學本。所以正確理解教材,對其進行資源整合很有必要。(一)本框內容結構《社會歷史的主體》是人教版新課程標準實驗教材高中思想政治教育必修4生活與哲學第四單元《尋覓社會的真諦》第11課第2框的內容,本框題包括兩目:人民群眾是歷史的創(chuàng)造者;群眾觀點和群眾路線。
學生回答:推動社會發(fā)展的矛盾是:生產(chǎn)力和生產(chǎn)關系的矛盾,經(jīng)濟基礎和上層建筑的矛盾。問題:你知道人類社會存在和發(fā)展的基礎嗎?學生回答,步步深入。社會發(fā)展的規(guī)律是生產(chǎn)關系一定要適合生產(chǎn)力發(fā)展的規(guī)律,上層建筑一定要適合經(jīng)濟基礎狀況的規(guī)律。你是如何理解這兩個規(guī)律的?請舉例說明。那么你是如何理解這一規(guī)律的,請舉例說明學生閱讀教材第二目,并舉例說明。培養(yǎng)學生自我學習能力。教師歸納:總結生產(chǎn)力和生產(chǎn)關系、經(jīng)濟基礎和上層建筑的辯證關系原理。過渡:我們掌握了社會發(fā)展的規(guī)律,那么同學們來說一下,社會發(fā)展呈什么趨勢?這一趨勢怎么實現(xiàn)的?社會矛盾的解決方式有幾種,為什么會有這么的區(qū)別,我們國家的矛盾解決靠什么方式來完成?學生閱讀教材第三目,學生分組合作探究,交流發(fā)言。設計意圖:提升推導能力,引導深化認識。教師歸納總結:社會歷史發(fā)展的總趨勢是前進的、上升的,發(fā)展的過程是曲折的。
本節(jié)通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.能利用已知函數(shù)模型求解實際問題.2.能自建確定性函數(shù)模型解決實際問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:建立函數(shù)模型,把實際應用問題轉化為數(shù)學問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學運算:解答數(shù)學問題,求得結果;4.數(shù)據(jù)分析:把數(shù)學結果轉譯成具體問題的結論,做出解答;5.數(shù)學建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.重點:利用函數(shù)模型解決實際問題;難點:數(shù)模型的構造與對數(shù)據(jù)的處理.
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關系(充分、必要、充要條件)轉化為集合間的關系,(3)利用集合間的關系建立不等關系,(4)求解參數(shù)范圍.跟蹤訓練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結讓學生總結本節(jié)課所學主要知識及解題技巧
本課是高中數(shù)學第一章第4節(jié),充要條件是中學數(shù)學中最重要的數(shù)學概念之一, 它主要討論了命題的條件與結論之間的邏輯關系,目的是為今后的數(shù)學學習特別是數(shù)學推理的學習打下基礎。從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們去解決具體問題則更為困難,因此”充要條件”的教學成為中學數(shù)學的難點之一,而必要條件的定義又是本節(jié)內容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學習,使學生明白對條件的判定應該歸結為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學生思維能力的嚴密性品質.
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.3節(jié)《不同增長函數(shù)的差異》 是在學習了指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)之后的對函數(shù)學習的一次梳理和總結。本節(jié)提出函數(shù)增長快慢的問題,通過函數(shù)圖像及三個函數(shù)的性質,完成函數(shù)增長快慢的認識。既是對三種函數(shù)學習的總結,也為后續(xù)導數(shù)的學習做了鋪墊。培養(yǎng)和發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長差異.2、經(jīng)過探究對函數(shù)的圖像觀察,理解對數(shù)增長、直線上升、指數(shù)爆炸。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;3、在認識函數(shù)增長差異的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數(shù)學應用的意識,探索數(shù)學。 a.數(shù)學抽象:函數(shù)增長快慢的認識;b.邏輯推理:由特殊到一般的推理;
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.1節(jié)《對數(shù)函數(shù)的概念》。對數(shù)函數(shù)是高中數(shù)學在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質,都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。學習中讓學生體會在類比推理,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數(shù)學提供了更多角度的分析方法。培養(yǎng)學生邏輯推理、數(shù)學直觀、數(shù)學抽象、和數(shù)學建模的核心素養(yǎng)。1、理解對數(shù)函數(shù)的定義,會求對數(shù)函數(shù)的定義域;2、了解對數(shù)函數(shù)與指數(shù)函數(shù)之間的聯(lián)系,培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;滲透類比等基本數(shù)學思想方法。3、在學習對數(shù)函數(shù)過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數(shù)學應用的意識,感受數(shù)學、理解數(shù)學、探索數(shù)學,提高學習數(shù)學的興趣。