一、說教材表內(nèi)除法二單元主要內(nèi)容有:7.8.9的乘法口訣求商,解決用除法計算的簡單的實際問題,綜合應用乘,除法計算的稍復雜的實際問題。本單元的目標是著重讓學生在熟練掌握用口訣求商一般方法的基礎上,綜合應用表內(nèi)乘除法的計算技能解決一些簡單和稍復雜的涉及乘,除運算的實際問題。今天所教學的內(nèi)容是解決問題中的第一個內(nèi)容,求一個數(shù)是另一個數(shù)的幾倍是多少,這課時的主要目標是:1、聯(lián)系實際問題理解"一個數(shù)是另一個數(shù)的幾倍"的含義,體會數(shù)量之間的相互關系;會用自己的語言表達解決問題的大致過程和結(jié)果。2、根據(jù)"倍"的概念和除法的含義,分析、推理、探究"求一個數(shù)是另一個數(shù)的幾倍"的實際問題的一般方法;經(jīng)歷將"求一個數(shù)是另一個數(shù)的幾倍是多少"的實際問題轉(zhuǎn)化成"求一個數(shù)里面有幾個另一個數(shù)"的數(shù)學問題的過程,初步學會用轉(zhuǎn)化的方法來解決簡單的實際問題。
2.內(nèi)容內(nèi)在邏輯本單元為八年級下冊第二單元內(nèi)容。本單元由導語、第三課和第四課組成、第三課“公民權(quán)利”設有兩課,分別是“公民基本權(quán)利”和“依法行使權(quán)利”、第四課“公民義務”設有兩框,分別是“公民基本義務”和“依法履行義務”。單元導語首先明確中學生在國家中具有公民身份,是國家的主人,依法享受公民權(quán)利并承擔公民義務。指明公民基本權(quán)利和義務是憲法的核心內(nèi)容,從而激發(fā)學生學習公民基本權(quán)利和義務具體內(nèi)容的興趣。引導學生進一步探究如何依法行使公民權(quán)利、如何依法履行公民義務,思考依法行使公民權(quán)利、履行義務對個人、家庭、社會及國家的重要意義。引言指明了公民權(quán)利對于我們參與社會生活、實現(xiàn)人生幸福的意義,意在引發(fā)學生對公民權(quán)利在個人成長、社會進步與國家發(fā)展方面所具有的價值的初步思考,啟發(fā)學生思考如何依法行使和維護自身享有的公民權(quán)利,進而導入新課。
本單元在整冊教材中起到了承前啟后的作用:第一單元《堅持憲法至上》主 要是培養(yǎng)學生的憲法意識,為后面的內(nèi)容打下思想基礎,通過本單元的學習,讓 學生進一步認識憲法規(guī)定的公民基本權(quán)利和基本義務,幫助學生樹立正確的權(quán)利 觀和義務觀,是對第一單元內(nèi)容的深入和延伸;第三單元《人民當家做主》主要 是幫助學生更多的了解我國基本制度和國家機關,鼓勵學生積極參與政治生活, 增強對國家的認同感和主人翁意識,學生需要學會正確行使公民的政治權(quán)利和自 由,因此,本單元又為第三單元內(nèi)容的學習打下基礎,作好鋪墊。其中,第三課主要介紹公民的基本權(quán)利、如何正確行使權(quán)利及公民維權(quán)的途徑,幫助學生樹立正確的權(quán)利觀;第四課主要介紹公民的基本義務、如何自覺履 行義務及違反義務須承擔的責任,并在兩課的基礎上總結(jié)權(quán)利和義務的關系,幫 助學生樹立正確的義務觀,最終形成“權(quán)責一致”的觀念。
某小區(qū)突發(fā)火情。消防中隊接警后迅速趕來, 但由于沿途不少車輛亂停放堵 住道路, 消防車無法順利進入小區(qū)。危急時刻, 小區(qū)一名熱心大姐奮力呼救, 號 召周圍居民配合物業(yè)人員一起用人力將沿途車輛一一搬開, 這才讓消防車順利抵 達起火樓棟,經(jīng)過及時疏散,無人員傷亡。某校八(2)班以上述新聞為背景,組織一次以“依法行使權(quán)利,讓生命通 道暢通”為主題的社會實踐活動。請你參與其中。 (1)調(diào)查組的同學在某小區(qū)發(fā)現(xiàn)有一輛私家車占用了消防通道。聯(lián)系車主后, 該車主說: “我自己的車, 想停哪兒就停哪兒, 哪有那么多火災! ”請你從“權(quán) 利與義務的關系”的角度對其進行勸說該如何處理好權(quán)利和義務的關系。①公民的權(quán)利與義務相互依存、相互促進。 ②公民既是法定權(quán)利的享有者, 又是法定義務的承擔者。 ③我們不僅要增強權(quán)利意識, 依法行使權(quán)利, 而且要增 強義務觀念, 自覺履行法定的義務。因此, 作為小區(qū)居民, 我們在依法行使停車 權(quán)利的同時也要自覺履行維護小區(qū)消防安全的義務。
1.【解析】根據(jù)教材所學,依法治國要求全民守法,正確行使權(quán)利,自覺履行義務, A項沒有履行依法納稅的義務,排除; B項沒有履行服兵役的義務,排除;C項侵害救火英雄的名譽權(quán),是一種違法行為,要承擔相應的法律責任,故排除;D項自覺履行了維護國家安全和利益的義務,故符合題意?!敬鸢浮緿2.【解析】該題考查公民的權(quán)利和義務的關系; 依據(jù)課本內(nèi)容,公民的權(quán)利和義務是一致的。公民的權(quán)利和義務是密不可分的, 沒有無義務的權(quán)利,也沒有無權(quán)利的義務;題干中“不愿履行或輕視義務”割裂了權(quán)利與義務的關系,沒有樹立起正確的權(quán)利義務觀念。 所以A項正確; BCD錯誤?!敬鸢浮緼。3. 【解析】本題主要考查遵守憲法和法律這一公民基本義務。遵守和維護社會秩序是這一基本義務的具體要求,不服從國家疫情封控管理屬于擾亂社會秩序的違法行為, 要承擔一定的【答案】(1) 勸阻爸爸。(2) 自覺維護社會秩序, 依法履行公民義務, 法律要求的必須做,禁止做的堅決不做,否則就會受到法律制裁。
②積極參與國家事務和社會事務的管理③在享有勞動權(quán)利的同時,也履行了勞動的義務④既獲得了勞動報酬,也為國家和社會作出了貢獻 A.①② B.②③ C.①④ D.③④11.2020 年 6 月 19 日,國家林業(yè)和草原局、農(nóng)業(yè)農(nóng)村部發(fā)布通知,就《國家重點 保護野生動物名錄》公開征求意見。畫眉、啄木鳥、田螺等被增列入名錄中,55 個鯨豚類和猛禽類等物種保護等級升級。作為中學生,保護野生動物是:( ) A.法律禁止做的,我們堅決不做 B.法律要求做的,我們必須去做C.道德要求做的,我們積極去做 D. 自覺自愿行為,可做也可不做 12.遇到交通肇事,不按照正常程序處理,而是采取極端的方式解決。陜西省榆 林市公安局榆陽分局鎮(zhèn)川派出所,對涉嫌非法入侵他人住宅的 5 名嫌疑人刑拘。 這表明:( )①公民的住宅不受侵犯②禁止非法搜查或者非法侵入公民的住宅③公民權(quán)利如果受到損害,要懂得依照法定程序維護權(quán)利④我們在行使自由和權(quán)利的時候,不得損害其他公民的合法的自由和權(quán)利
4.閱讀材料,回答問題:疫情防控期間,一方面,公民面臨著被感染的風險,有權(quán)獲得政府和社會組 織提供的專業(yè)服務與保障。為此,國家有關部門出臺了免除個人醫(yī)療費用負擔的 政策,讓廣大患者消除了疾病治療的后顧之憂。另一方面,公民也應當成為疫情 防控中的責任主體之一,依法履行自己的義務,如實報告自己的健康狀況,配合 相關管理部門做好居家隔離。(1)結(jié)合材料,分析公民行使權(quán)利與履行義務之間的關系。(2)作為青少年,我們應該如何履行法律義務?5. 閱讀材料,回答問題:2021年3月1日,《中小學教育懲戒規(guī)則(試行)》(以下簡稱“《規(guī) 則》”)正式施行?!兑?guī)則》指出,學生有下列情形之一,學校及其教師應當予 以制止并進行批評教育,確有必要的,可以實施教育懲戒:(一)故意不完成教 學任務要求或者不服從教育、管理的;(二)擾亂課堂秩序、學校教育教學秩序 的;(三)吸煙、飲酒,或者言行失范違反學生守則的。
授課 日期 班級16高造價 課題: §10.1 計數(shù)原理 教學目的要求: 1.掌握分類計數(shù)原理與分步計數(shù)原理的概念和區(qū)別; 2.能利用兩個原理分析和解決一些簡單的應用問題; 3.通過對一些應用問題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學重點、難點: 兩個原理的概念與區(qū)別 授課方法: 任務驅(qū)動法 小組合作學習法 教學參考及教具(含多媒體教學設備): 《單招教學大綱》、課件 授課執(zhí)行情況及分析: 板書設計或授課提綱 §10.1 計數(shù)原理 1、加法原理 2、乘法原理 3、兩個原理的區(qū)別
①堅持依法行政,維護公平正義②嚴格遵循訴訟程序,加強立法③司法過程和結(jié)果都要合法、公正④堅持以事實為根據(jù),以法律為準繩A.②④ B.②③ C.③④ D.①②3.疫情防控期間,某地檢察院充分發(fā)揮檢察職能,與公安機關等部門加強協(xié)作, 提前介入涉疫案件偵查,切實保障人民群眾合法權(quán)益,全力維護疫情期間社會穩(wěn) 定。由此可見 ( )①人民檢察院是我國的法律監(jiān)督機關②公安機關是我國的審判機關③公平正義需要法治的保障④人民檢察院接受政府的領導和約束A.①② B.①③ C.②③ D.②④(二) 非選擇題4. 探究與分享:結(jié)合所學知識,與同學討論探究,回答下列問題。案例反思:2017 年 4 月 20 日,最高人民法院、中央電視臺聯(lián)合公布 2016 年推動法治進程十大案件評選結(jié)果,聶某被宣判無罪案等十大案件入選。1995 年 3 月,石家莊中院一審判處聶某死刑,同時判處賠償受害人家屬喪葬費等計 2000 元。1995 年 4 月 27 日,聶某被執(zhí)行死刑。2016 年 12 月 2 日,最高人民法 院第二巡回法庭宣告撤銷原審判決,改判聶某無罪。2017 年 3 月,聶某家屬獲 268.13991 萬元國家賠償。思考:如何才能避免這種錯案的發(fā)生?
10.閱讀材料,回答問題。材料一:近年來,公路上經(jīng)常出現(xiàn)“路怒族” ,只要看到別人搶道、開車慢、不讓道等他們就會 罵人,而且罵得很難聽,甚至大打出手。材料二:在新型冠狀病毒肺炎疫情防控期間,2020年2月1 日貴州省貴陽市的某商場,一位打扮靚 麗的年輕女子要進入商場時不戴口罩,被商場門口執(zhí)勤的店員勸阻,要求戴上口罩才能進入商場,該 女子不但不聽勸告,而是嗤鼻一笑,不以為然。隨后就繞開工作人員打算進入商場,4名工作人員隨 后上前阻止,該女子竟然要強行闖入商場,甚至對商場工作人員拳腳相加,隨后商場工作人員報警。(1) 結(jié)合材料說說,情緒受哪些因素的影響?(2) 根據(jù)材料談談在生活中如何管理憤怒?11.【東東的日記】下面是東東的“微日記”片段,記錄著成長的點滴,與你分享。
方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進行化簡.此類問題就是根據(jù)三角形的三邊關系,判斷絕對值符號里面式子的正負,然后進行化簡.三、板書設計1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學生探究的欲望,圍繞這個問題讓學生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關系,重點研究“能圍成三角形的三條邊之間到底有什么關系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學符合學生的認知特點,既增加了學習興趣,又增強了學生的動手能力
方法總結(jié):當某一事件A發(fā)生的可能性大小與相關圖形的面積大小有關時,概率的計算方法是事件A所有可能結(jié)果所組成的圖形的面積與所有可能結(jié)果組成的總圖形面積之比,即P(A)=事件A所占圖形面積總圖形面積.概率的求法關鍵是要找準兩點:(1)全部情況的總數(shù);(2)符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.探究點二:與面積有關的概率的應用如圖,把一個圓形轉(zhuǎn)盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,自由轉(zhuǎn)動轉(zhuǎn)盤,停止后指針落在B區(qū)域的概率為________.解析:∵一個圓形轉(zhuǎn)盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,∴圓形轉(zhuǎn)盤被等分成10份,其中B區(qū)域占2份,∴P(落在B區(qū)域)=210=15.故答案為15.三、板書設計1.與面積有關的等可能事件的概率P(A)= 2.與面積有關的概率的應用本課時所學習的內(nèi)容多與實際相結(jié)合,因此教學過程中要引導學生展開豐富的聯(lián)想,在日常生活中發(fā)現(xiàn)問題,并進行合理的整合歸納,選擇適宜的數(shù)學方法來解決問題
解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關于x=-3對稱,根據(jù)點C在對稱軸左側(cè),且CD=8,求出點C的橫坐標和縱坐標,再根據(jù)點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關于x=-3對稱.∵點C在對稱軸左側(cè),且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應用.
如圖,課外數(shù)學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結(jié)果精確到個位).解析:根據(jù)銳角三角函數(shù)關系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構(gòu)造直角三角形.
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結(jié):解決本題的關鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結(jié)論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調(diào),借助多媒體加以突出.
解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關鍵.三、板書設計1.角平分線的性質(zhì):角平分線上的點到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質(zhì)的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生在性質(zhì)的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結(jié):解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據(jù)不含某一項,可得這一項系數(shù)等于零,再列出方程解答.三、板書設計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應用本節(jié)知識的綜合性較強,要求學生熟練掌握前面所學的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學生理解并掌握多項式與多項式相乘的法則,教學中一定要精講精練,讓學生從練習中再次體會法則的內(nèi)容,為以后的學習奠定基礎
光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉(zhuǎn)化為單項式相除問題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結(jié):解整式除法的實際應用題時,應分清何為除式,何為被除式,然后應當單項式除以單項式法則計算.三、板書設計1.單項式除以單項式的運算法則:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.2.單項式除以單項式的應用在教學過程中,通過生活中的情景導入,引導學生根據(jù)單項式乘以單項式的乘法運算推導出其逆運算的規(guī)律,在探究的過程中經(jīng)歷數(shù)學概念的生成過程,從而加深印象