1.要有充分的直觀操作。學生思維的特點一般的是從感性認識開始,然后形成表象,通過一系列的思維活動,上升到理性認識。本課的教學采用直觀操作法,是一個重要的環(huán)節(jié)。2.啟發(fā)學生獨立思考。學生是學習的主體,只有引導學生獨立地發(fā)現(xiàn)問題、思考問題、解決問題,才能收到事半功倍的教學效果。3.講練結合。4.充分運用知識的遷移規(guī)律,引導學生掌握新知識。教學過程:三、說教學過程:(一)、創(chuàng)設情境上課前,教師先給大家講一個與今天的學習內(nèi)容有關的故事,希望同學們認真地聽、認真地想。故事是這樣的:大象過生日啦!那天來了很多的朋友,有小兔、小猴等等等等,可熱鬧啦!在眾多的朋友中只數(shù)小兔最高興,它樂什么呢?原來它知道了蛋糕的分配方案,認為自己分的蛋糕比小猴的大。蛋糕是這樣分配的:分給小兔的蛋糕是棱長10厘米的正方體,分給小猴的蛋糕是棱長1分米的方體。(分別出示兩塊同樣大小的正方體,用10厘米和1分米表示它們的棱長)
學生掌握數(shù)學概念過程的本身就是一個把教材知識結構轉(zhuǎn)化成自己認知結構的過程,這一過程的結果可能形成正確的數(shù)學概念,也可能由于主、客觀原因而形成一些錯誤的數(shù)學概念。因此,在這一階段有兩大任務要完成,一是強化已經(jīng)形成的正確認識,二是修正某些錯誤認識,使掌握的概念都能正確反映數(shù)學對象的本質(zhì)屬性。在情境中解決問題是從新課教學到學生獨立作業(yè)之間的一個重要環(huán)節(jié),目的在于鞏固所學知識,并把知識轉(zhuǎn)化為技能。教材“試一試”和“練一練”的第1、2題,讓學生通過觀察、思考,并且在有了比較充分的感性體驗的基礎上揭示體積概念及讓學生充分感受同一物體形狀變了,但體積保持不變,增強實際體驗。“練一練”第3題,讓學生體會到如果每個杯子的大小不同,那么3杯就可能等于2杯,這是為后面體積單位作鋪墊。
五、說教學過程為了高效地實現(xiàn)教學目標,整個教學過程分為如下幾個環(huán)節(jié)進行:環(huán)節(jié)一:創(chuàng)設情景,導入新課在新課開始時,用多媒體課件以PPT的形式展示幾幅含有長方體和正方體的圖片。即建筑物,道路和家具。讓學生通過觀察圖片找出其中的長方體。然后,讓學生聯(lián)系到生活中的物體,找出2到3個長方體的實物。并在這些實物的基礎上呈現(xiàn)長方體的幾何圖形。也由此導入新課——長方體的認識,板書課題,長方體的認識。環(huán)節(jié)二:合作學習,探究新知。在這個環(huán)節(jié)中,我設計了這樣幾個活動,來落實教學目標?;顒右?,“數(shù)一數(shù)”。把學生分成幾個小組,讓他們觀察手中的長方體紙盒,請他們找出長方體有幾個面,再找出面與面之間的線,由此導入棱的概念,通過觀察,他們發(fā)現(xiàn)每三條棱相交于一點。由此導入頂點的概念,再找出有幾個頂點。并在設計的表格中板書。
這道題的設計,一方面培養(yǎng)了學生解決實際問題的能力,另一方面也加深了對圓柱體積計算公式的理解,同時數(shù)學知識也和學生的生活實際結合起來,使學生明白,我們所學的數(shù)學是身邊的數(shù)學,是有趣的、有用的數(shù)學,從而激發(fā)學生的學習興趣。(五)總結全課,深化教學目標結合板書,引導學生說出本課所學的內(nèi)容,我們是這樣設計的:這節(jié)課我們學習了哪些內(nèi)容?圓柱體積的計算公式是怎樣推導出來的?你有什么收獲?然后教師歸納,通過本節(jié)課的學習,我們懂得了新知識的得來是通過已學的知識來解決的,以后希望同學們多動腦,勤思考,在我們的生活中還有好多問題需要利用所學知識來解決的,望同學們能學會運用,善于用轉(zhuǎn)化的思想來武裝自己的頭腦,思考問題。
1.教學內(nèi)容:本節(jié)教材是北師大版六年級下冊第一單元《圓柱和圓錐》,《圓錐體積》的第一課時。教學內(nèi)容為圓錐體積計算公式的推導,學生嘗試題、練習、試一試、練一練第一題。2.教材分析本節(jié)教材是在學生已經(jīng)掌握了圓柱體積計算及其應用和認識了圓錐的基本特征的基礎上學習的,是小學階段學習幾何知識的最后一課時內(nèi)容。讓學生學好這一部分內(nèi)容,有利于進一步發(fā)展學生的空間觀念,為進一步解決一些實際問題打下基礎。教材按照實驗、觀察、推導、歸納、實際應用的程序進行安排。3.教學重點:能正確運用圓錐體積計算公式求圓錐的體積。教學難點:理解圓錐體積公式的推導過程。4.教學目標:(1)知識方面:理解并掌握圓錐體積公式的推導過程,學會運用圓錐體積計算公式求圓錐的體積;
(3)確立按生產(chǎn)要素分配的意義確立按生產(chǎn)要素分配的原則,是對市場經(jīng)濟條件下各種生產(chǎn)要素所有權存在的合理性、合法性的確認,體現(xiàn)了國家對公民權利的尊重,對勞動、知識、人才、創(chuàng)造的尊重。有利于讓一切生產(chǎn)要素的活力競相迸發(fā),讓一切創(chuàng)造社會財富的源泉充分涌流,以造福人民。(三)課堂總結、點評 通過這節(jié)課的學習,我們懂得了在我國社會主義初級階段,實行以按勞分配為主體、多種分配方式并存的制度,把按勞分配和按生產(chǎn)要素分配結合起來具有客觀必然性,也有重要的意義。★課余作業(yè) 組織學生撰寫社會調(diào)查報告,要求學生調(diào)查自己家里的收入情況,分清哪些收入是按勞分配所得,哪些是非按勞分配收入,并進一步分析現(xiàn)在的收入形式與以前相比有哪些變化,這種變化給家庭的生活帶來哪些影響?★教學體會本節(jié)內(nèi)容是與學生生活實際密切聯(lián)系的內(nèi)容,在學習中應該多引入日常生產(chǎn)、生活中常見的一些實例,讓學生去深刻理解這些知識,并能夠從自己的實踐中理解、把握我國分配政策的合理性。
4、課堂討論:社會主義的根本原則是共同富裕,這也是正確處理分配關系的目標。而十五大報告卻進一步明確指出“允許和鼓勵一部分人通過誠實勞動和合法經(jīng)營先富起來,允許和鼓勵資本、技術等生產(chǎn)要素參與收益分配”。這矛盾嗎?為什么?以小組方式進行討論,再以代表的形式發(fā)表意見,這樣既調(diào)動了學生的積極性,也使學生對內(nèi)容有了更深層次的了解。最后老師加以總結,用“蛋糕效應”來闡述“效率優(yōu)先,兼顧公平”的關系,既形象又貼切,加深學生的理解。本課時內(nèi)容比較抽象,學生對于概念的理解有較大的難度。因此在教學中我采用多媒體課件教學,聯(lián)系生活實際,讓學生在生活中去體會貨幣的職責,區(qū)分貨幣的職能,以便達到學以致用的目的。同時適時設置疑問,讓學生與我共同思考,真正實現(xiàn)“師生互動,生生互動”,調(diào)動學生積極,主動的參與到教學實踐活動中。(三)課堂小結,強化認識。(2—3分鐘)通過歸納小結,既強調(diào)了重點,又鞏固了本節(jié)知識,幫助學生形成知識網(wǎng)絡,便于課后理解記憶。
學生已學習水循環(huán)和巖石圈物質(zhì)循環(huán),對地理環(huán)境要素有初步的認識,對物質(zhì)遷移和能量的交換有一定的了解,已具備基本的地理閱讀分析、提取信息的能力。但學生還缺乏綜合分析問題解決問題的能力,通過案例來幫助學生對自然地理環(huán)境整體性的認識,還需要補充光合作用、分解作用等知識,并進一步培養(yǎng)學生綜合分析地理問題的能力。三、說教法案例教學、啟發(fā)式講授四、說學法學生原有的地理基礎知識不扎實,學習地理方法簡單;但學生思維活躍,有強烈的求知欲,所以在學習的過程中,老師應充分利用這一點,調(diào)動學生的積極性,激發(fā)學生的學習興趣。學案導學法;合作探究法;案例分析法等,自主學習、合作學習,培養(yǎng)學生的主動學習的能力、團隊精神,增強學習效果;體會自然地理環(huán)境的整體性和復雜性,將學習目標內(nèi)化到行動上。
知識和技能 1、理解自然地理環(huán)境整體性的基本內(nèi)涵。2、了解自然地理環(huán)境整體性的表現(xiàn)3、使學生樹立普遍聯(lián)系的觀點,再利用和改造自然中要充分考慮各地理要素的關系,避免“牽一發(fā)而動全身”。過程與方法 1、自主學習,分析 討論法。2、探究與活動, 理解地理環(huán)境的整體性。3、利用景觀 圖片分析地理環(huán)境的整體性。情感、態(tài)度與價值觀幫助學生樹立事物是普遍聯(lián)系的思想 ,在利用自然中要做到統(tǒng)籌考慮。教學 重點1、地理環(huán)境整體性的原因。2、地理要素間相互作用產(chǎn)生新功能。3、自然地理環(huán)境的演化過程具有統(tǒng)一性。4、自然地理環(huán)境要素會“牽一發(fā)而動全身”。教學 難點地理要素間相互作用產(chǎn)生新功能;自然地理環(huán)境具有同一演化過 程。教具、資料多媒體課件、景觀圖片課時安排
1.生產(chǎn)功能:合成有機物的能力2.平衡功能:使自然地理要素的性質(zhì)保持穩(wěn)定的能力【教師講解】生產(chǎn)功能主要依賴于光合作用。在光合作用過程中,植物提供葉綠素,大氣提供熱量和二氧化碳,土壤及水圈、巖石圈提供水分及無機鹽。光合作用通過物質(zhì)和能量的交換,將生物、大氣、水、土壤、巖石等地理要素統(tǒng)一在一起,在一定的條件下,生產(chǎn)出有機物。由此可見,生產(chǎn)功能是自然環(huán)境的整體功能而非單個地理要素的功能。大氣本身不具有減緩二氧化碳增加的功能,但是,在自然地理環(huán)境中,通過各地理要素的相互作用,卻能消除部分新增的二氧化碳的能力,既為自然地理環(huán)境的平衡功能。請大家閱讀教材P94活動,利用平衡功能的原理,解釋一定范圍內(nèi)各物種的數(shù)量基本恒定這一現(xiàn)象?!緦W生討論回答】略。(可參考教參)【轉(zhuǎn)折】自然地理環(huán)境各要素每時每刻都在演化,如我們熟知的氣候變化、地貌變化等。各個要素的發(fā)展演化是統(tǒng)一的,一個要素的演化伴隨著其他各個要素的演化。
1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側畫法觀察:矩形窗戶在陽光照射下留在地面上的影子是什么形狀?眺望遠處成塊的農(nóng)田,矩形的農(nóng)田在我們眼里又是什么形狀呢?3. 給出斜二測具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時,把他們畫成對應的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長度不變,平行于Y軸的線段,在直觀圖中長度為原來一半。4.對斜二測方法進行舉例:對于平面多邊形,我們常用斜二測畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測畫法(1)建兩個坐標系,注意斜坐標系夾角為45°或135°;(2)與坐標軸平行或重合的線段保持平行或重合;(3)水平線段等長,豎直線段減半;(4)整理.簡言之:“橫不變,豎減半,平行、重合不改變。”
1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關系?你能用圓柱、圓錐、圓臺的結構特征來解釋這種關系嗎?3.練習一圓柱的一個底面積是S,側面展開圖是一個正方體,那么這個圓柱的側面積是( )A 4πS B 2πS C πS D 4.練習二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點,D為BC的中點,H,G分別是BD,CD的中點,若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關系可以通過實驗得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學生回顧本節(jié)課知識點,教師補充。 讓學生掌握本節(jié)課知識點,并能夠靈活運用。
接著引導學生進一步思考截面可不可以是特殊的三角形:等腰三角形和等邊三角形。教師用課件演示切截過程,展示切截位置的變化引起截面形狀的變化,圖形特殊化。使學生的思考經(jīng)歷由一般到特殊的過程。2.截面是其他形狀學生先猜想正方體的截面還有可能是什么形狀,再利用實驗操作型課件對正方體進行無限次的切截,讓學生在無限次切截的過程中體會截面產(chǎn)生和變化的整個過程,發(fā)現(xiàn)截面產(chǎn)生和變化的規(guī)律。學生從切截活動中發(fā)現(xiàn)猜想時沒有想到的截面圖形,體會到探索的樂趣。教師再引導學生歸納正方體截面邊數(shù)的規(guī)律。學生的認知得到升華。接著引導學生歸納截面形狀中的特殊四邊形。二.圓柱體和圓錐體的截面學生先猜想圓柱體的截面可能是什么形狀,教師利用實驗操作型課件對圓柱體進行無限次的切截,學生觀察截面形狀。
(三)解釋、應用和發(fā)展問題4:如果測量一座小山的高度,小山腳下還有一條河,怎么辦? (教師巡視課堂,友情幫助 ,讓學生參照書本99頁,用測角儀測量塔高的方法.這個物體的底部不能到達。)(1)請你設計一個測量小山高度的方法:要求寫出測量步驟和必須的測量數(shù)據(jù)(用字母表示),并畫出測量平面圖形;(2)用你測量的數(shù)據(jù)(用字母表示),寫出計算小山高度的方法。過程: (1) 學生觀察、思考、建模、自行解決(3) 學生間討論交流后,教師展示部分學生的解答過程(重點關注:1.學生能否發(fā)現(xiàn)解決問題的途徑;學生在引導下,能否借助方程或方程組來解決問題;學生的自學能力.2.關注學生克服困難的勇氣和堅強的意志力。3.繼續(xù)關注學生中出現(xiàn)的典型錯誤。)(設計意圖: 讓學生進一步熟悉如何將實際問題轉(zhuǎn)化成數(shù)學模型,并能用解直角三角形的知識解決簡單的實際問題,發(fā)展學生的應用意識和應用能力。
1.經(jīng)歷從不同方向觀察物體的活動過程,發(fā)展空間觀念.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的形狀.3.能識別從三個方向看到的簡單物體的形狀,會畫立方體及簡單組合體從三個方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停?、情境導入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩句:“橫看成嶺側成峰,遠近高低各不同.不識廬山真面目,只緣身在此山中.”體驗出其中的意境嗎?你能挖掘出其中蘊含的數(shù)學道理嗎?讓我們一起探索新知吧!二、合作探究探究點一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個幾何體從上面看,共有2行,第一行能看到3個小正方形,第二行能看到2個小正方形.故選D.
【教學目標】1.經(jīng)歷從不同方向觀察物體的活動過程,發(fā)展空間觀念;能在與他人交流的過程中,合理清晰地表達自己的思維過程.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的圖形.3.能識別簡單物體的三視圖,會畫立方體及其簡單組合體的三視圖.【基礎知識精講】1.主視圖、左視圖、俯視圖的定義從不同方向觀察同一物體,從正面看到的圖叫主視圖,從左面看到的圖叫左視圖,從上面看到的圖叫做俯視圖.2.幾種幾何體的三視圖(1)正方體:三視圖都是正方形.圓錐的主視圖、左視圖都是三角形,而俯視圖的圖中有一個點表示圓錐的頂點,因為從上往下看圓錐時先看到圓錐的頂點,再看到底面的圓.3.如何畫三視圖 當用若干個小正方體搭成新的幾何體,如何畫這個新的幾何體的三視圖?
解析:當截面與軸截面平行時,得到的截面的形狀為長方形;當截面與軸截面斜交時,得到的截面的形狀是橢圓;當截面與軸截面垂直時,得到的截面的形狀是圓,所以截面的形狀不可能是三角形.故選A.方法總結:用平面去截圓柱時,常見的截面有圓、橢圓、長方形、類似于梯形、類似于拱形等.探究點三:截圓錐問題一豎直平面經(jīng)過圓錐的頂點截圓錐,所得到的截面形狀與下圖中相同的是()解析:經(jīng)過圓錐頂點的平面與圓錐的側面和底面截得的都是一條線.如圖,由圖可知得到的截面是一個等腰三角形.故選B.方法總結:用平面去截圓錐,截面的形狀可能是三角形、圓、橢圓等.三、板書設計教學過程中,強調(diào)學生自主探索和合作交流,經(jīng)歷操作、抽象、歸納、積累等思維過程,從中獲得數(shù)學知識與技能,發(fā)展空間觀念和動手操作能力,同時升華學生的情感態(tài)度和價值觀.
[例3]、用一個平面去截一個幾何體,截面形狀有圓、三角形,那么這個幾何體可能是_________。四、鞏固強化:1、一個正方體的截面不可能是( )A、三角形 B、梯形 C、五邊形 D、七邊形2、用一個平面去截五棱柱,邊數(shù)最多的截面是_______形.3*、用一個平面去截幾何體,若截面是三角形,這個幾何體可能是__________________________________________________.4*、用一個平面截一個幾何體,如果截面是圓,你能想象出原來的幾何體可能是什么嗎?如虹截面是三角形呢?5*、如果用一個平面截一個正方體的一個角,剩下的幾何體有幾個頂點、幾條棱、幾個面?6*、幾何體中的圓臺、棱錐都是課外介紹的,所以我們就在這個欄目里繼續(xù)為大家介紹這兩種幾何體的截面.(1)圓臺用平面截圓臺,截面形狀會有_____和_______這兩種較特殊圖形,截法如下:
解析:此題作為一道開放型題,分類的方法非常多,只要能說明分類的理由即可.但要注意:按某一標準分類時,要做到不重不漏,分類標準不同時,分類的結果也就不盡相同.解:本題答案不唯一,如按柱體、錐體、球體分類:(2)(3)(5)和(6)都是柱體,(4)(7)是錐體,(1)是球體.方法總結:生活中常見幾何體有兩種分類:一種按柱體、錐體、球體分類;一種按平面和曲面分類.探究點二:幾何體的形成筆尖畫線可以理解為點動成線.使用數(shù)學知識解釋下列生活中的現(xiàn)象:(1)流星劃破夜空,留下美麗的弧線;(2)一條拉直的細線切開了一塊豆腐;(3)把一枚硬幣立在桌面上用力一轉(zhuǎn),形成一個球.解析:解釋現(xiàn)象關鍵是看其屬于什么運動.解:(1)點動成線;(2)線動成面;(3)面動成體.方法總結:生活中的很多現(xiàn)象都可以用數(shù)學知識來解釋,關鍵是要找到生活實例與數(shù)學知識的連接點,如第(1)題可將流星看作一個點,則“點動成線”.如圖所示,將平面圖形繞軸旋轉(zhuǎn)一周,得到的幾何體是()
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。